• Title, Summary, Keyword: 연결부

Search Result 3,002, Processing Time 0.037 seconds

Analysis on the Behaviors of Precast Concrete Beam-Column Connections Subject to Cyclic Loading (반복하중을 받는 프리캐스트 콘크리트 건식 보-기둥 연결부의 거동분석)

  • Song, Hyung-Soo;Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4
    • /
    • pp.497-506
    • /
    • 2006
  • The precast concrete beam-column connectors for the high-rise office buildings were investigated experimentally in this study. The specimens of general precast beam-column connector which is used in a domestic site, specimen of DDC(dywidag ductile connectors) of Germany, and specimen of DDC with post-tensioning and modified DDC with post-tensioning were constructed and tested to verify the safety. The DDC with and without post-tensioning showed reliable joint strength and ductility but failed in critical inclined shear crackings at the column. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The use of prestressing did not helpful significantly to increase the strength and ductility of connectors but helpful only to develop self-centering behavior for stability.

Experimental Study for Performance Evaluation of Structural Details of Girder-Abutment Joint in Integral Abutment Steel Bridge (일체식교대 강교량의 거더-교대 연결부 상세의 거동평가를 위한 실험적 연구)

  • Kim, Sang-Hyo;Yoon, Ji-Hyun;Choi, Woo-Jin;Kim, Jun-Hwan;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.61-72
    • /
    • 2011
  • In this study, the structural details of steel girder-abutment joints with shear connectors and tie bars were suggested to improve the rigid behavior and crack-resisting capacity of the joints in integral bridges. Experimental loading tests of steel girder-abutment joint specimens with the proposed and empirically constructed structural details were carried out, and the capacities and behavioral characteristics of the joints were evaluated through loading tests. Based on the results of the loading tests, it was estimated that all types of tested joints can be applied to the steel girder-abutment joints because they have sufficient stiffness and crack-resisting capacity under the required design and yield loads. According to the initial stiffness, crack propagations, and load-strain relationships, however, the joints with shear connectors and tie bars showed better structural behaviors compared to the empirically constructed joint.

Behaviors of Joints with Perfobond Rib Shear Connectors in Steel-PSC Hybrid System (Perfobond Rib을 적용한 강-PSC 혼합구조 연결부의 거동 평가)

  • Kim, Sang Hyo;Lee, Chan Goo;Yoon, Ji Hyun;Won, Jeong Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.647-657
    • /
    • 2009
  • This paper studies the behavior of joints in steel-PSC (prestressed concrete) hybrid beams, which is necessary for the application of hybrid beams to spliced girder bridges, and proposes a new type of joint with improved construction convenience and structural behavior. In the proposed joint, perfobond rib shear connectors are attached to the upper and lower plates, which are expanded from the steel girders and located between the steel girder and the PSC girder. The experimental tests were performed on hybrid beams with the suggested joint. The results showed that all the beams had similar ultimate strengths and failure modes, due to the failure of their PSC parts. The composite action of the perfobond ribs was verified by examining the initial stiffness and cracks of the test beams. In addition, the test beams showed a higher degree of ultimate strength than the beams with stud shear connectors in the joints that had been previously studied. Thus, the proposed joint is effective for the steel-PSC hybrid beam.

Experimental Study on Behaviors of Pile-Abutment Joint in Integral Abutment Bridge (일체식 교대 교량의 파일-교대 연결부 거동에 관한 실험적 연구)

  • Kim, Sang-Hyo;Yoon, Ji-Hyun;Ahn, Jin-Hee;Lee, Sang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.651-659
    • /
    • 2009
  • This study dealt with the behavior of pile-abutment joints in integral abutment bridges. Two types of pile-abutment joints were proposed to strengthen its rigid action. One was fabricated with transverse rebars which penetrated the H-pile in the abutment. The other was composed of stud shear connectors on the flanges of the H-pile. Three half scaled pile-abutment joint specimens were fabricated and loading tests were performed to evaluate the behavior of proposed joints. The results showed that the initial stiffness in elastic region of all specimens was sufficient to be applied for the integral abutment bridges. However, the performances of the proposed joints were shown to be more effective in rigid action compared to the joints types suggested by the Integral Bridge Design Guideline. The results from stiffness, strength, rotation and crack propagation tests supported this matter.

  • PDF

Numerical Analysis on the Structure Behavior of the Connected Long-span Beam during Excavation in Narrow Streets (도로 폭이 좁은 굴착공사에서 연결부가 적용되는 장지간 주형의 수치해석적 거동 평가)

  • Choi, Kwang-Sou;Ha, Sang-Bong;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • This study evaluates the structural behavior of connected long-span beams applied for excavation in urban areas with a narrow street. Generally, the reliability of the connection is reduced owing to the defect of the upper flange in the connection. An improved connection part was developed to complement the defects in the connected long-span beam. A finite element analysis based on a commercial program, ABAQUS, was employed to evaluate the behavior of the improved connection part. A numerical analysis model was proposed to analyze the high-strength bolt connection and the composite behavior of steel and concrete applied to the improved connection. The suitability of the proposed numerical analysis was verified by comparing the experimental and numerical analysis results of the references. Using the proposed numerical analysis method, the improved and general connections were analyzed and compared with each other. The stress distribution and elastic-plastic behavior of the long-span beam were analyzed numerically. The analysis confirmed that 25% of the compressive stress was improved, resulting in the improvement of structural safety and performance.

Study on the Shape of a Longitudinal Joint of the Slab-type Precast Modular Bridges (슬래브 형식 프리캐스트 모듈러교량의 종방향 연결부 형상 결정에 관한 연구)

  • Lee, Sang Yoon;Song, Jae Joon;Kim, Hyeong Yeol;Lee, Young Ho;Lee, Jung Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.98-111
    • /
    • 2012
  • In this study, a longitudinal joint connection was proposed for the short-span slab-type precast modular bridges with rapid construction. The slab-type modular bridge consists of a number of precast slab modules and has the joint connection between the modules in the longitudinal direction of the bridge. The finite element based parameter analysis and the push-out test were conducted to design the shape and the dimensions of the longitudinal joint connection. Number of shear keys within the joint, height and depth of the shear key, tooth angle, and the spacing were considered as the design parameters. Using the local cracking load obtained from the analytical and experimental results, an efficiency factor was proposed to evaluate the effectiveness of the longitudinal joint connection. The dimensions of shear key were determined by comparing the efficiency factors.

Development of Abutment-H pile Connection for Large Lateral Displacements of Integral Abutment Bridges (일체식 교대 교량의 대횡변위를 위한 교대와 H형 말뚝 연결부의 개발)

  • Kim, Woo Seok;Lee, Jaeha;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.309-318
    • /
    • 2013
  • Abutment-to-pile connection in an integral abutment bridge is vulnerable to lateral displacement induced by thermal movement of the superstructure. However, previous researches have merely focused on the connection. In order to improve the performance of the connection, new abutment-to-pile connection designs were proposed based on quasi-static nonlinear finite element model. The reinforcement detail specified in PennDOT DM4 and HSS tube were barely effective in controlling crack growing but spiral rebar effectively performed to delay crack growth as well as absorbing energy capacity. However, it was found that delaying cracking and strengthening the connection also caused the high lateral load in superstructures. Consequently, shape of HP pile were modified to introduce plastic hinge of the HP pile for reducing the lateral load in superstructures. Connections with modified HP pile significantly prevented crack propagations under the lateral displacement.

Non-Prismatic Beam Element for Beams with RBS Connection (RBS 연결부를 갖는 보에 대한 부등 단면 보 요소)

  • Kim, Kee Dong;Ko, Man Gi;Hwang, Byoung Kuk;Pae, Chang Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6
    • /
    • pp.833-846
    • /
    • 2004
  • This study presents a non-prismatic beam element for modeling the elastic behavior of steel beams, which have the post-Northridge connections in steel moment frames. The elastic stiffness matrix, including the shear effects for non-prismatic members with reduced beam section (RBS) connection, is in closed form. A simplified approach is also suggested, which uses a prismatic beam element to model beams with the RBS connection. This method can estimate quiteexactly the maximum story drift ratios of frames with the RBS connection. The effects of reduced beam section connection on the elastic stiffness of steel moment frames were investigated. The selection of a proper model to account for deformations at the joint might have a more important role in estimating the maximum story drift ratios of frames with better accuracy than the RBS cutouts.

Evaluation on the Behaviors of Precast Concrete Beam-Column Connections for Apartments (공동주택용 프리캐스트 콘크리트 보-기둥 연결부의 거동분석)

  • Song, Hyung-Soo;Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5
    • /
    • pp.657-666
    • /
    • 2006
  • The precast concrete beam-column connectors to retrofit an apartment building were investigated experimentally. Five precast concrete beam-column connectors were considered to develop a modified model which was adapted to domestic construction conditions from the DDC(dywidag ductile connection) of Germany. Special H-shape steel hardware was used to decrease the width of column and beams for the construction of external frames in apartments. It was found that the DDC had high joint strength and ductility, however failed in inclined shear crackings in the columns. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The test result of modified one with grouting was compared to that of the one without grouting within the duct. The one with grouting showed higher strength and ductility in failure than that without grouting.

Evaluation of Gusset Plate Connection Stiffness in Braced Frames (가새 골조에서 거싯 플레이트 연결부의 강성 평가)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.105-113
    • /
    • 2009
  • To improve braced frame performance, the connection strength, stiffness, and ductility must be directly considered in the frame design. The resistance of the connection must be designed to resist seismic loads and to help provide the required system ductility. In addition, the connection stiffness affects the dynamic response and the deformation demands on the structural members and connections. In this paper, current design models for gusset plate connections are reviewed and evaluated usingthe results of past experiments. Current models are still not sufficient to provide adequate connection design guidelines and the actual stress and strain states in the gusset plate are very nonlinear and highly complex. Design engineers want simple models with beam and column elements to make an approximate estimation of system and connection performance. The simplified design models are developed and evaluated to predict connection stiffness and system behavior. These models produce reasonably accurate and reliable estimation of connection stiffness.