• Title/Summary/Keyword: Electromagnetic stimulation

Search Result 48, Processing Time 0.03 seconds

Design and Evaluation of Pulsed Electromagnetic Field Stimulation Parameter Variable System for Cell and Animal Models (세포 및 동물모델용 펄스형 전자기장 자극 파라미터 가변장치 설계 및 평가)

  • Lee, Jawoo;Park, Changsoon;Kim, Junyoung;Lee, Yongheum
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • An electromagnetic generator with variable stimulation parameters is required to conduct basic research on magnetic flux density and frequency for pulsed electromagnetic fields (PEMFs). In this study, we design an electromagnetic generator that can conduct basic research by providing parameters optimized for cell and animal experimental conditions through adjustable stimulation parameters. The magnetic core was selected as a solenoid capable of uniform and stable electromagnetic stimulation. The solenoid was designed in consideration of the experimental mouse and cell culture dish insertion. A voltage and current adjustable power supply for variable magnetic flux density was designed. The system was designed to be adjustable in frequency and pulse width and to enable 3-channel output. The reliability of the system and solenoid was evaluated through magnetic flux density, frequency, and pulse width measurements. The measured magnetic flux density was expressed as an image and qualitatively observed. Based on the acquired image, the stimulation area according to the magnetic flux density decrease rate was extracted. The PEMF frequency and pulse width error rates were presented as mean ± SD, and were confirmed to be 0.0928 ± 0.0934% and 0.529 ± 0.527%, respectively. The magnetic flux density decreased as the distance from the center of the solenoid increased, and decreased sharply from 60 mm or more. The length of the magnetic stimulation area according to the degree of magnetic flux density decrease was obtained through the magnetic flux density image. A PEMF generator and stimulation parameter control system suitable for cell and animal models were designed, and system reliability was evaluated.

Noninvasive Brain Stimulation Using a Modulated Microwave Signal

  • Seo, Taeyoon;Oh, Seongwoog;Jung, Dahee;Huh, Yeowool;Cho, Jeiwon;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.70-72
    • /
    • 2018
  • We propose a microwave signal generation system for brain stimulation. The existing brain stimulation system uses a signal of several tens of kHz, and the magnetic field distribution is wide. Microwave is used to locally limit the distribution of the electromagnetic field and to change the action potential of the cell with less power. The switch modulates the microwave signal to obtain a pulse envelope. The action potential of the cell can be controlled to the excitation/inhibition state by adjusting the repetition frequency. These results are confirmed by measuring the cell potential of the mouse brain.

Effect of Skin Tissue Necrosis Relaxation by Low Frequency Pulsed Electromagnetic Fields (LF-PEMF) Stimulation (저주파 펄스 전자기장 자극에 의한 피부 조직괴사 완화 효과)

  • Lee, Jawoo;Kim, Junyoung;Lee, Yongheum
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • Objective: The aim of this study is to consider the effect of skin tissue necrosis by improving blood flow in animal skin models for low frequency pulsed electromagnetic fields (LF_PEMF) stimulation. Methods: Twenty rats (Wistar EPM-1 male, 280-320 g) were randomly divided into control groups (n=10) and the PEMF groups (n=10). To induce necrosis of the skin tissue, skin flap was treated in the back of the rat, followed by isolation film and skin flap suturing. Subsequently, the degree of necrosis of the skin tissue was observed for 7 days. The control group did not perform any stimulation after the procedure. For the PEMF group, LF_PEMF (1 Hz, 10 mT) was stimulated in the skin flap area, for 30 minutes a day and 7 days. Cross-polarization images were acquired at the site and skin tissue necrosis patterns were analyzed. Results: In the control group, skin tissue necrosis progressed rapidly over time. In the PEMF group, skin tissue necrosis was slower than the control group. In particular, no further skin tissue necrosis progress on the day 6. Over time, a statistically significant difference from the continuous necrosis progression pattern in the control group was identified (p<0.05). Conclusions: It was confirmed that low frequency pulsed electromagnetic fields (LF_PEMF) stimulation can induce relaxation of skin tissue necrosis.

Mouse Somatosensory Cortex Stimulation Using Pulse Modulated Transcranial Magnetic Stimulation (구형파 변조된 경두개 자기자극을 이용한 쥐의 감각피질 자극실험)

  • Sun, Sukkyu;Seo, Taeyoon;Huh, Yeowool;Cho, Jeiwon;Kwon, Youngwoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.482-485
    • /
    • 2016
  • In this work, a transcranial magnetic stimulation(TMS) experiment on animals is performed to stimulate the brain cortex of the mouse using modulated signals. The proposed TMS system is composed of the inverter, transformer, capacitor, variable inductor, and stimulation coil to generate 1.5 mT magnetic field in the brain cortex of the mouse. The stimulation signal is modulated to square wave where the carrier frequency is swept from 85 to 91 kHz to investigate the stimulation effect. The experimental result shows that when the carrier frequency of the stimulation signal is lower than 89 kHz, the reaction of the mouse does not change while the stimulation signal which has the carrier frequency higher than 89 kHz results in decreasing the threshold of the stimulus for the pressure.

Response Properties of Meridians for focused variable electromagnetic stimulus (접속형 가변 전자계 자극에 대한 경락반응특성)

  • Lee, Gyoun-Jung;Cho, Dong-Guk;Kim, Soo-Byung;Kwon, Sun-Min;Shin, Tae-Min;Lee, Kyoung-Joung;Lee, Yong-Heum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1399-1410
    • /
    • 2009
  • It is a method to treat pain using medication, neurotomy, and surgery. And acupuncture, ultrasound, electric treatment, and magnetic treatment are applied as a alternative physiotherapy. Electronic therapy is useful but it can be affected by impedance of skin or subcutaneous tissue. So, percutaneous stimulation is leading therapy, that is very randomly. We developed the system which can stimulate parts of acupuncture point noninvasively using the focused magnetic field. And we designed the magnetic stimulation electrode which is considered efficiency of the magnetic stimulation. It can make similar stimulation with manual acupuncture. To confirm the availability and reliability we compared Meridian Electronic Potential(MEP) change between manual acupuncture and magnetic stimulation. From this result, we found out the MEP changes of manual acupuncture and magnetic stimulation were similar. And there were various response properties as changes of stimulation method, intensity, and frequency. Also, the MEP change can be induced by electromagnetic stimulation. We confirmed that it is possible to use electromagnetic stimulation as a acupoint stimulation or pain treatment instrument.

Comparison and Evaluation of Non-invasive and Non-pharmacological Methods for Relieving Motion Sickness (MS) (멀미 완화를 위한 비침습적 및 비약리적 방법 비교 및 평가)

  • Park, Seung Won;Choi, Jun Won;Nam, Sanghoon;Choi, Yeo Eun;Lee, Kang In;Jeong, Myeon Gyu;Shin, Tae-Min;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.211-224
    • /
    • 2021
  • Purpose: The purpose of this study is to present a way to alleviate motion sickness(MS) by stimulating acupoint through PEMFs, and to assess the effectiveness of PEMFs against stimulation previously used to stimulate acupoint using biosignal evaluations and surveys. Materials and Methods: Thirteen healthy men participated in the experiment. MS was induced in the participants, and MS relief stimulation was applied for 30 minutes. There were 4 types of MS relief stimulation, and Sham, Reliefband, Transcutaneous electrical nerve stimulation(TENS), and Pulsed electromagnetic fields stimulation(PEMFs) were used. The biosignals were measured during 30 minutes of applying MS relief stimulation, and the symptoms of MS were evaluated through a questionnaire survey. The measured biosignals are Electrocardiogram(ECG), Electrodermal activity(EDA), Respiration, Skin temperature(SKT), and Electrogastrogram(EGG). A one-way ANOVA test was performed for the rate of change by stimulation for MS relief over time. Results: Participants who were stimulated had a sharp decrease in MS symptoms. Biosignals were analyzed to evaluate autonomic nervous system activity, and the parasympathetic nervous system could be activated through stimulation. Conclusion: TENS and PEMFs were more effective in relieving MS symptoms than Reliefband. It is believed that PEMFs will be effective in consideration of the comfort of participants to be applied to actual vehicles, and studies to further verify the effects of PEMFs on MS should be conducted.

The Analysis of the Muscle Fatigue Recovery Effect on LR9 by Compound Stimulation of the PEMFs and LED (음포혈(陰包, LR9)에서 펄스형 전자기장 및 가시광 LED 복합 자극이 대퇴부 근피로 회복에 미치는 영향 분석)

  • Lee, Na-Ra;Kim, Jung-Yoon;Park, Sun-Woo;Kim, Soo-Byeong;Lee, Hee-Young;Ahn, Soon-Jae;Kim, Young-Ho;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.28 no.3
    • /
    • pp.13-23
    • /
    • 2011
  • Objectives : The aim of this study was to develop the combined medical stimulus system consisted of the PEMFs (Pulsed electromagnetic fields) and LED which are able to stimulate local point such as acupoints and trigger points. Methods : To evaluate the therapeutic effect on the musculoskeletal disorders and the possibility of alternative method on manual acupuncture, we compared the fatigue recovery of two groups by analyzing the EMG and peak torque (non-stimulation and, stimulation group) after strenuous knee exercise. We chose the LR9 as a stimulation point. Results : The median frequency (MF) and fatigue index (F.I) of the stimulation group were recovered faster than those of the non-stimulation group. Also the peak torques of both groups were not restored until after 20 minutes. However, the peak torque of the stimulation group was regained higher than that of the non-stimulation group. Conclusions : We confirmed that the proposed combined stimulus system had useful effects as treatment instrument of musculoskeletal disorder using non-invasive method of PEMFs and LED.

Electroencephalogram Variation by Electromagnetic Wave on Human Light Sensing (인체 광인식에 있어서 전자파에 의한 뇌파 변화)

  • Park Hyung-Jun;Yoon Jae-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.82-89
    • /
    • 2006
  • The electroencephalogram generated by light stimulation in human body of dark adaption state was measured and analyzed in the cases that electromagnetic wave was put in and not put in, respectively. Shieldroom being able to interrupt the light and the electromagnetic wave of outer was constructed, and the experimental system being able to apply any light and any electromagnetic wave was designed. When the electromagnetic wave was applied to body or not, the variation characteristics of each component in the electroencephalogram were i3s follows. The 6 wave was increased and the $\alpha$ wave and the $\beta$ wave were decreased in the case that the electromagnetic wave was applied, and the variation range of the $\Theta$ wave was small. And the influence of electromagnetic wave on human body was that the appearance time of the $\beta$ wave was late, and it moaned that the time of visual recognition was delayed.

Effects of electromagnetic stimulation on neurogenesis and neuronal proliferation in rat hippocampal slice culture (실험 쥐 해마조직배양에서 전자기 자극이 신경조직발생 및 증식에 미치는 영향)

  • Kim, Deok-Soo;Choi, Eung Sang;Chae, Soo Ahn
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.5
    • /
    • pp.558-564
    • /
    • 2006
  • Purpose : Transcranial electromagnetic stimulation(TMS) is a noninvasive method which stimulates the central nervous system through pulsed magnetic fields without direct effect on the neurons. Although the neurobiologic mechanisms of magnetic stimulation are unknown, the effects on the brain are variable according to the diverse stimulation protocols. This study aims to observe the effect of the magnetic stimulation with two different stimulation methods on the cultured hippocampal slices. Methods : We obtained brains from 8-days-old Spague-Dawley rats and dissected the hippocampal tissue under the microscope. Then we chopped the tissue into 450 µm thickness slices and cultured the hippocampal tissue by Stoppini's method. We divided the inserts, which contained five healthy cultured hippocampal slices respectively, into magnetic stimulation groups and a control group. To compare the different effects according to the frequency of magnetic stimulation, stimulation was done every three days from five days in vitro at 0.67 Hz in the low stimulation group and at 50 Hz in the high stimulation group. After N-methyl-D-aspartate exposure to the hippocampal slices at 14 days in vitro, magnetic stimulation was done every three days in one and was not done in another group. To evaluate the neuronal activity after magnetic stimulation, the $NeuN/{\beta}$-actin ratio was calculated after western blotting in each group. Results : The expression of NeuN in the magnetic stimulation group was stronger than that of the control group, especially in the high frequency stimulation group. After N-methyl-D-aspartate exposure to hippocampal slices, the expression of NeuN in the magnetic stimulation group was similar to that of the control group, whereas the expression in the magnetic non-stimulation group was lower than that of the control group. Conclusion : We suggest that magnetic stimulation increases the neuronal activity in cultured hippocamal slices, in proportion to the stimulating frequency, and has a neuroprotective effect on neuronal damage.

Acceleration of Cell Proliferation and Gene Expression in Human Chondrosarcoma Cells Stimulated by Strong Pulse Magnetic Field

  • Shin, Sung Chul;Chung, Eui Ryong;Hwang, Do Guwn
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • For the treatment of osteoarthritis, pulsed electromagnetic field stimulus has been suggested as a useful therapeutic method in rehabilitative medicine. Most studies have been performed under low-frequency and low-energy to find out biological properties for stimulating chondrocyte with pulsed magnetic field. In this study, the effect of strong pulse magnetic field on the human chondrosarcoma cells (SW-1353) has been investigated by means of cell counting, morphologies, and gene expression of cartilage extracellular matrix genes. The SW-1353 cells were exposed under the field intensities of 270, 100, 55, 36, and 26 mTesla during 6 hours a day in 5 consecutive days. The pulse magnetic field with an LRC oscillating signal has the pulse width of 0.126 msec and stimulation period of 1 sec. For the 270 and 100 mTesla stimulation, the cell proliferation significantly increased in 21-24% as compared with the non-stimulated cells. Gene expression of cartilage extracellular matrix genes (ACAN, COMP and COL2A1) was assayed by quantitative real time-PCR method. The ACAN gene expression showed a significant brightness, which means the increase on gene expression, compared with the non-stimulated cells. Our results suggest that the strong pulse magnetic field stimulation can be utilized to accelerate cell proliferation and gene expression on human chondrosarcoma cells.