• Title/Summary/Keyword: Emergency Power System

Search Result 439, Processing Time 0.025 seconds

A Study on the Operation Method of Emergency Power System with Reserved Firefighting Power (RFP) (소방전원보존형 발전기(RFP)의 작동 방법에 관한 연구)

  • Lee, Won-Kang;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.29-34
    • /
    • 2012
  • The purpose of this study is to propose an effective operating method of a power generator used by the Emergency Power System in case of a simultaneous fire and of the limitations of the interlock system the power supply from the emergency power generator. On the Emergency Power System with Reserved Fire-fighting Power (RFP), in case of an overload, the collective control Emergency Power System signals the main circuit breaker to shut off the supply to the emergency load, leaving the supply to the firefighting load uninterrupted to the end. The sequential control Emergency Power System signals the firefighting power supply to shut off the fire stage of the emergency load and continues to monitor the power supply. If an overload happens again from increased firefighting load, the sequential control Emergency Power System sends a secondary signal to shut down the second stage of the emergency load.

A Study on the Development of Digital Power Supply for Ship′s Emergency Lighting System (선박 비상조명용 디지털 전원장치 개발)

  • Lee, Sung-Geun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.667-671
    • /
    • 2004
  • This paper describes an development of digital power supply for ship's emergency lighting system(SELS). Proposed system is composed of emergency power supply system(EPSS), half bridge(HB) inverter, fluorescent lamp(FL) starting circuit and microprocessor control system. Experimental works using proposed system confirm that speedy and stable power to be supplied when main power source cut-off, compared with conventional analog type, and control input power up to 35.0[%] by adjusting pulse frequency of the HB inverter.

Selection and Analysis of Operating Parameters for Condition Monitoring of Emergency Diesel Generator at Nuclear Power Plant (원자력발전소 비상디젤발전기 상태감시를 위한 운전인자 선정에 관한 연구)

  • Park, J.H.;Choi, K.H.;Lee, S.G.;Park, J.E.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.3-8
    • /
    • 2007
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear reactor at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the plant safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to maintain and monitor and forecast the reliability level of diesel generator. To do this kind of diesel generator condition monitoring we reviewed several operating factors and history of the wolsong unit 3 diesel generator and selected the proper conditioning monitoring operating factors.

  • PDF

Control Scheme of Emergency Power Supply for Elevator Emergency Call System (승강기의 비상 통화장치용 비상 전원장치의 충·방전 제어회로)

  • Park, Noh-Sik;Lee, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.40-48
    • /
    • 2015
  • In this paper, battery charging and discharging circuit with a single voltage power supply is proposed. The proposed circuit has the separated current path and charging-monitoring sequence control scheme. In the charging sequence, the proposed 2-level comparator combined with control signal of the micro-processor can control the constant charging current to protect the over current of the battery. Furthermore, the proposed circuit uses a periodic main power switch control to detect the discharging characteristics to estimate the approximated battery life-time. In the experiments, the proposed emergency power supply for emergency call system has 89% efficiency with 98% power factor. And the proposed sequence control scheme is well operated in the designed emergency power system.

A study of AC/DC combined emergency source for power system control (전력계통 제어를 위한 변전소 AC/DC 겸용 비상전원에 관한 연구)

  • Jun, Bum-Bae;Lee, Hyoung-Han;Kim, Chang-Gon;Ahn, Bo-Soon;Yun, Ki-Seob;Jung, Jong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.135-138
    • /
    • 2005
  • This paper focuses on emergency source and control of substation against the consequence of power system breakdown or outage. the aim of the paper is to provide ideas and guidance concerning methods of using AC/DC combined emergency source for power system control to restore power system after unforseen events, such as outages caused by natural disaster. so the emergency source and lamp is very important for restoration control of substation after outage. therefore, this paper proposes countermeasure and method for security of substation emergency source and lamp which is restored at breakdown.

  • PDF

PSPICE Modeling of Solar Cells for Use in Emergency Power System (비상발전용 전원으로 사용하기 위한 태양전지의 PSPICE 모델링)

  • Baek, Dong-Hyun;Song, Ho-Bin
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.52-57
    • /
    • 2010
  • Power supply to the motor using the emergency power system is being used. However, this system is rarely used except during emergency power is not inefficient. On the other hand, the use of solar power systems Emergency backup power supply as well as in normal maintenance savings, as many have benefits. In this paper, general-purpose simulator PSPICE simulations performed using the PV system to be used in the various models made by the library. In addition, for use as an emergency power generation solar power system design, modeling and analysis of the characteristics and practical use make an effective device was confirmed.

Analysis on Emergency Power Supplies in Buildings and a Model for Safe Operation of the Emergency Power System (건축물의 비상전원 적용실태 및 자가발전설비의 안전 운전 모델에 관한 연구)

  • Lee, Won-Kang;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • The purpose of this paper is to present a model for operating an emergency power system(EPS) that can secure a sufficient power supply used in case of a fire by analyzing the status of power supplies for emergency and firefighting operations. Investigations on the one of the causes of the operational failure of firefighting systems show evidence of EPS. Generally, when power to a building is interrupted, EPS supplies the emergency load(excepted firefighting load) first. When a power outage and a fire occur simultaneously, the EPS must be able to supply both the emergency load and the firefighting load, especially the firefighting load to the end. However, in order to save construction costs, emergency power generators in apartment, commercial, and business buildings can satisfy only one of the required loads. In cases like this, when a power outage and a fire occur simultaneously, there is a danger of firefighting equipment not operating due to insufficient power supply from the emergency generator. Therefore, an EPS must have a reserved firefighting power that can supply both the firefighting and the emergency load. Such EPS, when faced with a danger of an overload, will shut down the supply to all or part of the emergency load, thus securing a continuous power supply to the firefighting equipment. The generator power system with reserved firefighting power (RFP) will also have an indicator to show that the selective control is being used. General power generation systems for emergency load and firefighting load were found to have a demand factor of 50-60% with a lump. However, when installing an EPS, the builders must choose the higher demand factor suggested according to the official approval demand factor of the building.

Remote control of ship's emergency lighting system (선박 비상조명 시스템의 원격제어)

  • Lim, Hyun-Jung;Yang, Hyun-Suk;Kim, Kun-Woo;Lee, Sung-Geun;Kim, Yoon-Sik
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.252-253
    • /
    • 2005
  • This paper describes a improvement of power control characteristics of ship's emergency lighting power supply(SELPS), that power factor(PF) is improved and electric power is controlled extensively, and power ON-OFF is controlled and system parameter monitored in remote distance by PC serial communication.

  • PDF

Development of Ultrasonic Sensor for Engine Condition Diagnosis of EDG (비상디젤발전기 엔진 상태진단 초음파 탐촉자 개발)

  • Lee, Sang-Guk;Choi, Kwang-Hee
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.31-35
    • /
    • 2013
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear power plant at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite standby diesel generator should be ensured by a condition monitoring system designed to maintain, monitor and forecast the reliability level of diesel generator. The purpose of this paper is to improve the existing ultrasonic sensor used for condition diagnosis of engine fuel pump and cylinder head for the accurate diagnosis in actual engine condition of emergency diesel generator(EDG). As a result of this study, we could design and develop much more reliable ultrasonic sensor than existing ones.

Concept of an intelligent operator support system for initial emergency responses in nuclear power plants

  • Kang, Jung Sung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2453-2466
    • /
    • 2022
  • Nuclear power plant operators in the main control room are exposed to stressful conditions in emergency situations as immediate and appropriate mitigations are required. While emergency operating procedures (EOPs) provide operators with the appropriate tasks and diagnostic guidelines, EOPs have static properties that make it difficult to reflect the dynamic changes of the plant. Due to this static nature, operator workloads increase because unrelated information must be screened out and numerous displays must be checked to obtain the plant status. Generally, excessive workloads should be reduced because they can lead to human errors that may adversely affect nuclear power plant safety. This paper presents a framework for an operator support system that can substitute the initial responses of the EOPs, or in other words the immediate actions and diagnostic procedures, in the early stages of an emergency. The system assists operators in emergency operations as follows: performing the monitoring tasks in parallel, identifying current risk and latent risk causality, diagnosing the accident, and displaying all information intuitively with a master logic diagram. The risk causalities are analyzed with a functional modeling methodology called multilevel flow modeling. This system is expected to reduce workloads and the time for performing initial emergency response procedures.