• 제목/요약/키워드: Fatigue life distribution

검색결과 285건 처리시간 0.03초

복합재료 피로 수명 분포에 관한 고찰 (Analysis on fatigue life distribution of composite materials)

  • 황운봉;한경섭
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.790-805
    • /
    • 1988
  • 본 연구에서는 유리섬유 강화 에폭시 복합재료의 파괴 강도와 피로 수명을 정 규분포, 로그 정규 분포와 2모수 및 3모수 Weibull 분포 함수의 기대값으로 살펴 보았 다. 2연속 응력 피로 실험 [작은 응력에서 큰 응력으로의 실험(low-high test), 큰 응력에서 작은 응력으로의 실험(high-low test)]의 결과도 분포 함수들을 사용하여 분 석하였다. 비통계학적 누적 손상 법칙들(non-statistical cumulative damage rules) 을 2연속 응력 피로 수명 분산 예측에 이용하기 위해서 동등 순위 가정(equal rank assumption)을 확장하여 수정하였다. 수정한 누적 손상 모형은 Miner의 법칙, Brou- tman과 Sahu의 손상모형 및 Hashin과 Rotem의 모형 등이다.

탄소섬유/에폭시 복합적층판의 피로수명 분포특성 (Characteristics of Fatigue Life Distribution for Carbon/Epoxy Composite Laminates)

  • 김영기;박병준;김재훈;이영신;전제춘
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.119-123
    • /
    • 2000
  • The characteristics of fatigue life distribution for Carbon/epoxy composite laminates was investigated under tension-tension loading(R=0.1). The statistical nature of the fatigue life of the composite materials was analyzed by Weibull, normal, lognormal distributions As a result, it was observed that the correlation between the experimental results and the theoretical predictions for the fatigue life is good. The distribution of the static ultimate strength has the characteristic of lognormal distribution and distribution of the fatigue life has characteristics of the weibull distribution.

  • PDF

균열의 합체를 고려한 피로균열 진전수명의 확률분포 (The Probability Distribution of Fatigue Crack Propagation Life Considering Effect of Crack Coalescence)

  • 방홍인;윤한용
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1281-1287
    • /
    • 2000
  • The studies of probability distribution of the fatigue crack growth life have been somewhat reported. But the study on the probability distribution of the fatigue crack growth life considering the crack coalescence for three dimensional surface fatigue crack has apparently not been reported to date. In this study, the computer program has been developed to predict the probability distribution of the fatigue crack growth life considering the crack coalescence. The effects of parameters for the distribution of the fatigue crack propagation life were evaluated by using the program.

AZ31 마그네슘합금의 피로균열진전수명에 적합한 확률분포 평가 (Estimation of Probability Distribution Fit for Fatigue Crack Propagation Life of AZ31 Magnesium Alloy)

  • 최선순
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.707-719
    • /
    • 2009
  • The variables relating to the fatigue behavior have uncertainty and are random. The fatigue crack propagation is, thus, stochastic in nature. In this study, fatigue experiments are performed on the specimen of the magnesium alloy AZ31. The data of the fatigue life are scattered even in the same experimental condition. It is necessary to determine the probability distribution of the fatigue crack propagation life for the reliability analysis as well as the design and maintenance of structural components. Therefore the statistics and the probability distribution for the fatigue crack propagation life are investigated and the best fit probability distribution of that is proposed in this paper.

마그네슘합금의 피로파손수명의 누적확률분포특성과 신뢰성에 미치는 경계조건의 영향 (Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy)

  • 최선순
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.594-599
    • /
    • 2011
  • 본 논문은 마그네슘합금 AZ31의 피로파손수명의 확률론적 특성과 신뢰성에 미치는 경계조건의 영향을 평가하였다. 경계조건으로 시편두께와 응력비 그리고 최대피로하중을 적용하였으며, 각 경계조건별로 세부 실험조건에 대한 피로균열전파실험을 수행하여 피로파손수명에 대한 통계 데이터를 획득하였다. 마그네슘합금의 피로파손수명의 통계적 해석을 위하여 3-모수 와이블분포를 사용하였다. 시편두께가 두꺼울수록, 응력비가 클수록, 그리고 최대피로하중이 작을수록 통계적 피로파손수명이 길게 나타났다. 반면에 시편두께가 얇을수록, 응력비가 작을수록, 그리고 최대피로하중이 클수록 신뢰성이 급격히 감소하였다.

Deriving a Probabilistic Model for Fatigue Life Based on Physical Failure Mechanism

  • Suneung Ahn
    • 산업경영시스템학회지
    • /
    • 제24권68호
    • /
    • pp.1-7
    • /
    • 2001
  • A probabilistic model for fatigue life of a structural component is derived when the component is in a variable-amplitude loading environment. The physical mechanism which governs fatigue failure is used to model the fatigue life. Especially, the judgement of rotational symmetry in the-stress-intensity-factors results in the probability distribution for fatigue life. The probability distribution is related to the familiar truncated Gaussian distribution, which has a single parameter with a direct physical meaning.

  • PDF

크랭크스로 단조강의 피로수명의 확률분포 추정 (Estimation of Probability Distribution of Fatigue Lives in Crank Throw Forged Steel)

  • 김선진;안석환
    • 동력기계공학회지
    • /
    • 제20권3호
    • /
    • pp.29-35
    • /
    • 2016
  • Because of the severe service environment of the large marine vessel, the fatigue strength and its evaluation play an important role in design and maintenance of marine crankshaft. The aim of this work is to investigate the probability distribution of fatigue lives in crank throw forged steel and to develop the methodology for estimation of the probabilistic design fatigue strength. Detailed studies were performed on the constant amplitude axial loading fatigue test. The experiments were controlled by stress ratio of -1 and 15Hz frequency for each stress level. The considerable variability of fatigue life was observed in each stress level under rigidly controlled constant fatigue testing conditions. The fatigue life of crank throw forged steel was well followed the log-normal and Weibull distribution. In addition, it can be used for the estimation of probabilistic design fatigue strength by using the proposed methodology.

구상흑연주철의 피로수명분포에 대한 통계적 해석 (A Statistical Analysis on Fatigue Life Distribution in Spheroidal Graphite Cast Iron)

  • 장성수;김상태
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2353-2360
    • /
    • 2000
  • Statistical fatigue properties of metallic materials are increasingly required for reliability design purpose. In this study, static and fatigue tests were conducted and the normal, log-normal, two -parameter Weibull distributions at the 5% significance level are compared using the Kolmogorov-Smirnov goodness-of-fit test. Parameter estimation were compared with experimental results using the maximum likelihood method and least square method. It is found that two-parameter Weibull distribution and maximum likelihood method provide a good fit for static and fatigue life data. Therefore, it is applicable to the static and fatigue life analysis of the spheroidal graphite cast iron. The P-S-N curves were evaluated using log-normal distribution, which showed fatigue life behavior very well.

파손확률에 따른 마그네슘합금의 피로설계수명 예측 (Prediction of Fatigue Design Life in Magnesium Alloy by Failure Probability)

  • 최선순
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.804-811
    • /
    • 2010
  • The fatigue crack propagation is stochastic in nature, because the variables affecting the fatigue behavior are random and have uncertainty. Therefore, the fatigue life prediction is critical for the design and the maintenance of many structural components. In this study, fatigue experiments are conducted on the specimens of magnesium alloy AZ31 under various conditions such as thickness of specimen, the load ratio and the loading condition. The probability distribution fit to the fatigue failure life are investigated through a probability plot paper by these conditions. The probabilities of failure at various conditions are also estimated. The fatigue design life is predicted by using the Weibull distribution.

Fatigue life prediction based on Bayesian approach to incorporate field data into probability model

  • An, Dawn;Choi, Joo-Ho;Kim, Nam H.;Pattabhiraman, Sriram
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.427-442
    • /
    • 2011
  • In fatigue life design of mechanical components, uncertainties arising from materials and manufacturing processes should be taken into account for ensuring reliability. A common practice is to apply a safety factor in conjunction with a physics model for evaluating the lifecycle, which most likely relies on the designer's experience. Due to conservative design, predictions are often in disagreement with field observations, which makes it difficult to schedule maintenance. In this paper, the Bayesian technique, which incorporates the field failure data into prior knowledge, is used to obtain a more dependable prediction of fatigue life. The effects of prior knowledge, noise in data, and bias in measurements on the distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue life, its parameters are identified first, followed by estimating the distribution of fatigue life, which represents the degree of belief of the fatigue life conditional to the observed data. As more data are provided, the values will be updated to reduce the credible interval. The results can be used in various needs such as a risk analysis, reliability based design optimization, maintenance scheduling, or validation of reliability analysis codes. In order to obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed, which is a modern statistical computational method which effectively draws the samples of the given distribution. Field data of turbine components are exploited to illustrate our approach, which counts as a regular inspection of the number of failed blades in a turbine disk.