• Title/Summary/Keyword: Fibronectin adsorption

Search Result 13, Processing Time 0.03 seconds

EFFECTS OF VARIOUS SURFACE TREATMENTS FOR TITANIUM ON SURFACE MICRO ROUGHNESS, STATIC WETTABILITY, FIBRONECTIN ADSORPTION (표면 처리 방법에 따른 타이타늄의 미세 표면 거칠기, 표면 젖음성, fibronectin 흡착량에 미치는 영향)

  • Shin Hwa-Sub;Kim Young-Su;Shin Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.443-454
    • /
    • 2006
  • Purpose: This study aims to get the fundamental data which is necessary to the development direction of implant surface treatment hereafter, based on the understanding the surface structure and properties of titanium which is suitable for the absorption of initial tissue fluid by researching effects of additional surface treatments fir sandblasted with large git and acid-etched(SLA) titanium on surface micro-roughness, static wettability, fibronectin adsorption Materials and Method: In the Control groups, the commercial pure titanium disks which is 10mm in diameter and 2mm in thickness were treated with HCI after sandblasting with 50$\mu$m $Al_2O_3$. The experiment groups were made an experiment each by being treated with 1) 22.5% nitric acid according to SLA+ASTM F86 protocol, 2) SLA+30% peroxide, 3) SLA+NaOH, 4) SLA+ Oxalic acid, and 5) SLA+600$^{\circ}C$ heating. In each group, the value of Ra and RMS which are the gauges of surface roughness was measured, surface wettability was measured by analyzing with Sessile drop method, and fibronectin adsorption was measured with immunological assay. The significance of each group was verified by (SPSS, ver.10.0 SPSS Inc.) Kruskal-Wallis Test. (α=0.05) And the correlation significance between Surface micro-roughness and surface wettability. surface roughness and fibronectin adsorption, and surface wettability and fibronectin adsorption was tested by Spearman's correlation analysis. Result: All measure groups showed the significant differences in surface micro-roughness, surface wettability, and fibronectin adsorption. (p<0.05) There was no significance in correlation among the surface micro-roughness, surface wettability, and fibronectin adsorption. (p>0.05) Conclusion: Surface micro-roughness and surface wettability rarely affected the absorption of initial tissue fluid on the surface of titanium.

ADSORPTION OF HUMAN RECOMBINANT FIBRONECTIN TO TITANIUM IN VITRO

  • Kim H.J.;Chang I.T.;Koak J.Y.;Heo S.J.;Yim S.A.;Jang J.H.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.301-306
    • /
    • 2004
  • Statement of problem. Fibronectin mediates its biological effects by binding to integrins on cell membranes through a consensus site including the Arg-Gly-Asp (RGD) sequence within tenth type III module. Purpose. The purpose of our study was to investigate the adsorption affinity of human recombinant fibronectin peptide (hFNIII 9-10) to titanium and to investigate the effect of the surrounding ionic composition on the adsorption process. Material and methods. As for evaluating the affinity of hFNIII 9-10 to Ti, titanium disks were incubated in 40, 80 and $120{\mu}g/ml$ hFNIII 9-10 solution at $37^{\circ}C$ overnight, repectively. As for evaluating the effect of surrounding ionic concentration, hFNIII 9-10 was dissolved in distilled water, phosphate buffered saline and RPMI 1640. Optical density (O.D.) was measured in ELISA reader. Results. The results were as follows; 1. The adsorption of hFNIII 9-10 showed significantly highest mean optical density (O.D.) value in $80{\mu}g/ml$. 2. The difference of ionic composition in DW, PBS and RPMI did not influence the adsorption amount of hFNIII 9-10.

중성자 산란을 이용한 생체물질의 구조 연구 : 단백질의 생체유사막의 흡착

  • Sin, Gwan-U;Rafailovich, M.H.;Sokolov, J.;Pernodet, N.;Satija, S.K.
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.30-33
    • /
    • 2002
  • We have shown that it is possible to form a fibrilar network of fibronectin on a polyelectrolyte polymer film whose dimensions are similar to those reported on the extra cellular matrix. The fibronectin network was observed to form only when the charge density of the polymer was in excess of the natural charge density of the cell wall. Furthermore, the self-organized fibronectin layer was much thicker than the polymer film, indicating that long ranged interaction may playa key role in the assembly process. It is therefore important to understand the structure of the polymer layer/protein interface. Here we report on a neutron reflectivity study where we explore the structure of the polyelectrolyte layer, in this case sulfonated polystyrene (PSSx,), with varying degree of sulfonation (x<30%), as a function of sulfur content and counter ion concentration. These results are then correlated with systemic study of the adsorption and the multilayer formation of fibronectin as a function of incubation time for various sulfonation levels of $PSSx.^1$

  • PDF

Fabrication of Micro Patterned Fibronectin for Studying Adhesion and Alignment Behavior of Human Dermal Fibroblasts

  • Lee, Seung-Jae;Son, Young-Sook;Kim, Chun-Ho;Choi, Man-Soo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.348-356
    • /
    • 2007
  • The aim of this study was to fabricate a submicro-and micro-patterned fibronectin coated wafer for a cell culture, which allows the positions and dimensions of the attached cells to be controlled. A replica molding was made into silicon via a photomask in quartz, using E-beam lithography, and then fabricated a polydimethylsiloxane stamp using the designed silicon mold. Hexadecanethiol $[HS(CH_2){_{15}}CH_3]$, adsorbed on the raised plateau of the surface of polydimethylsiloxane stamp, was contact-printed to form self-assembled monolayers (SAMs) of hexadecanethiolate on the surface of an Au-coated glass wafer. In order to form another SAM for control of the surface wafer properties, a hydrophilic hexa (ethylene glycol) terminated alkanethiol $[HS(CH_2){_{11}}(OCH_2CH_2){_6}OH]$ was also synthesized. The structural changes were confirmed using UV and $^1H-NMR$ spectroscopies. A SAM terminated in the hexa(ethylene glycol) groups was subsequently formed on the bare gold remaining on the surface of the Aucoated glass wafer. In order to aid the attachment of cells, fibronectin was adsorbed onto the resulting wafer, with the pattern formed on the gold-coated wafer confirmed using immunofluorescence staining against fibronectin. Fibronectin was adsorbed only onto the SAMs terminated in the methyl groups of the substrate. The hexa (ethylene glycol)-terminated regions resisted the adsorption of protein. Human dermal fibroblasts (P=4), obtained from newborn foreskin, only attached to the fibronectin-coated, methyl-terminated hydrophobic regions of the patterned SAMs. N-HDFs were more actively adhered, and spread in a pattern spacing below $14{\mu}m$, rather than above $17{\mu}m$, could easily migrate on the substrate containing spacing of $10{\mu}m$ or less between the strip lines.

Comparative evaluation of the biological properties of fibrin for bone regeneration

  • Oh, Joung-Hwan;Kim, Hye-Jin;Kim, Tae-Il;Woo, Kyung Mi
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.110-114
    • /
    • 2014
  • Fibrin is a natural provisional matrix found in wound healing, while type I collagen is a major organic component of bone matrix. Despite the frequent use of fibrin and type I collagen in bone regenerative approaches, their comparative efficacies have not yet been evaluated. In the present study, we compared the effects of fibrin and collagen on the proliferation and differentiation of osteoblasts and protein adsorption. Compared to collagen, fibrin adsorbed approximately 6.7 times more serum fibronectin. Moreover, fibrin allowed the proliferation of larger MC3T3-E1 pre-osteoblasts, especially at a low cell density. Fibrin promoted osteoblast differentiation at higher levels than collagen, as confirmed by Runx2 expression and transcriptional activity, alkaline phosphatase activity, and calcium deposition. The results of the present study suggest that fibrin is superior to collagen in the support of bone regeneration.

Polymer Surfaces for Cell Adhesion I. Surface Modification of Polymers and ESCA Analysis (세포적합성 고분자 표면에 관한 연구 I. 고분자 표면 개질과 ESCA 분석)

  • 이진호;강길선
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.43-52
    • /
    • 1989
  • We modified polymer surfaces, polyethylene, polystyrene and polyester, to improve cellcompatibility. For surface modification of the polymers, we used various surface treatment methods; physicochemical oxidation methods such as plasma discharge, corona discharge, sulfuric acid and chloric acid treatments, and biological methods such as adsorption of plasma protein and fibronectin onto the polymer surfaces. The treated polymer surfaces were characterized by electron spectroscopy for chemical analysis ( ESCA ). The physicochemically treated polymers showed different surface chemical structures depending on the treated methods. The sulfuric acid-treated surfaces showed greater carboxyl groups than those of plasma- or corona- treated surfaces, while the chloric acid-treated one showed high density of hydroxyl group on the surface. By the biological treatments, the surfaces were uniformly coated with proteins. The fibronectin adsorbed on the surface seems to have unique properties for cell binding.

  • PDF

Evaluation of Endothelial Cell Attachment on Polymer Surface (고분자 표면의 혈관내피세포 부착력에 관한 연구)

  • Choi, Jin-Wook;Ryu, Gyu-Ha;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.131-140
    • /
    • 1990
  • To improve antithrombogenicity of polymer that used in vascular graft and artificial organs, seeding of human endothelial cells on the polyurethane was studied. Human endothelial cells were ismlated from human umbilical veins, using type I collagenase, and identified with goat anti vWF antibodies. Human endothilial cell seeding was tried upon the polyurethane which has good mechanical property and resists stresses. The hydrophobic polyurethane surface was changed hydrophilic by corona discharf:e treatment. Surface hydrophilicity was measured with Wilhemly plate method and the goniometer. To evaluate matrix protein adsorption, fibronectin adsorption test was done. To eveluate cell adhesion, human endothelial cell attachment forces were measured rising a perfusion chamber of , ism diamter. Less cells were detached from the hydrophilically treated polyurethane. This showed that corona discharge on the polyurethane could improve matrix adsorption and endothelial cell attachment.

  • PDF

Preparation and Atomic Force Microscopy (AFM) Characterization of DNA Scaffolds as a Template for Protein Immobilization

  • Kim, Hyeran;Lee, Hyun Uk;Lee, Jouhahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.411.2-411.2
    • /
    • 2014
  • The design of DNA nanostructures is of fundamental importance, the intrinsic value of DNA as a building-block material lies in its ability to organize other bio-molecules with nanometer-scale spacing. Here, we report the fabrication of DNA scaffolds with nano-pores (<10 nm size) that formed easily without the use of additives (i.e., avidin, biotin, polyamine, or inorganic materials) into large-scale structures by assembling DNA molecules at near room temperature ($30^{\circ}C$) and low pH (~5.5). Protein immobilization results also confirmed that a fibronectin (FN) proteins/large scale DNA scaffolds/aminopropylytriethoxysilane (APS)/SiO2/Si substrate with high sensitivity formed in a well-defined manner. The DNA scaffolds can be applied for use with DNA-based biochips, biophysics, and cell biology.

  • PDF

Plasma Surface Modification of Patterned Polyurethane Acrylate (PUA) Film for Biomedical Applications

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.223.2-223.2
    • /
    • 2015
  • Polyurethane acrylate (PUA) has been introduced to utilize as a mold material for sub-100 nm lithography as it provides advantages of stiffness for nanostructure formation, short curing time, flexibility for large area replication and transparency for relevant biomedical applications. Due to the ability to fabricate nanostructures on PUA, there have been many efforts to mimic extracellular matrix (ECM) using PUA especially in a field of tissue engineering. It has been demonstrated that PUA is useful for investigating the nanoscale-topographical effects on cell behavior in vitro such as cell attachment, spreading on a substrate, proliferation, and stem cell fate with various types of nanostructures. In this study, we have conducted surface modification of PUA films with micro/nanostructures on their surfaces using plasma treatment. In general, it is widely known that the plasma treated surface increases cell attachment as well as adsorption of ECM materials such as fibronectin, collagen and gelatin. Effect of plasma treatment on PUA especially with surface of micro/nanostructures needs to be understood further for its biomedical applications. We have evaluated the modified PUA film as a culture platform using adipose derived stem cells. Then, the behavior of stem cells and the level of adsorbed protein have been analyzed.

  • PDF