Communications for Statistical Applications and Methods
/
v.27
no.3
/
pp.285-299
/
2020
In many cases, we are interested in identifying independence between variables. For continuous random variables, correlation coefficients are often used to describe the relationship between variables; however, correlation does not imply independence. For finite discrete random variables, we can use the Pearson chi-square test to find independency. For the mixed type of continuous and discrete random variables, we do not have a general type of independent test. In this study, we develop a independence test of a continuous random variable and a discrete random variable without assuming a specific distribution using kernel density estimation. We provide some statistical criteria to test independence under some special settings and apply the proposed independence test to Pima Indian diabetes data. Through simulations, we calculate false positive rates and true positive rates to compare the proposed test and Kolmogorov-Smirnov test.
Communications for Statistical Applications and Methods
/
v.5
no.2
/
pp.411-416
/
1998
A simple nonparametric test of complete or total independence is suggested for continuous multivariate distributions. This procedure first discretizes the original variables based on their order statistics, and then tests the hypothesis of complete independence for the resulting contingency table. Under the hypothesis of independence, the chi-squared test statistic has an asymptotic chi-squared distribution. We present a simulation study to illustrate the accuracy in finite samples of the limiting distribution of the test statistic. We compare our method to another nonparametric test of complete independence via a simulation study. Finally, we apply our method to the residuals from a real data set.
Journal of the Korean Data and Information Science Society
/
v.17
no.1
/
pp.115-122
/
2006
A test is suggested for detecting deviations from both multivariate normality and independence. This test can be used for assessing the normality and independence of univariate time series residuals. We derive the limiting distribution of the test statistic and a simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we apply our method to a real data of time series.
Proceedings of the Korean Statistical Society Conference
/
2003.05a
/
pp.191-197
/
2003
This paper considers the independence test for two stationary infinite order autoregressive processes. For a test, we follow the empirical process method devised by Hoeffding (1948) and Blum, Kiefer and Rosenblatt (1961), and construct the Cram${\acute{e}}$r-von Mises type test statistics based on the least squares residuals. It is shown that the proposed test statistics behave asymptotically the same as those based on true errors.
Communications for Statistical Applications and Methods
/
v.23
no.3
/
pp.215-230
/
2016
The powers of some tests for independence hypothesis against positive (negative) quadrant dependence in generalized Farlie-Gumbel-Morgenstern distribution are compared graphically by simulation. Some of these tests are usual linear rank tests of independence. Two other possible rank tests of independence are locally most powerful rank test and a powerful nonparametric test based on the $Cram{\acute{e}}r-von$ Mises statistic. We also evaluate the empirical power of the class of distribution-free tests proposed by Kochar and Gupta (1987) based on the asymptotic distribution of a U-statistic and the test statistic proposed by $G{\ddot{u}}ven$ and Kotz (2008) in generalized Farlie-Gumbel-Morgenstern distribution. Tests of independence are also compared for sample sizes n = 20, 30, 50, empirically. Finally, we apply two examples to illustrate the results.
Journal of the Korean Data and Information Science Society
/
v.25
no.5
/
pp.1039-1055
/
2014
The distribution of a test statistic under a null hypothesis depends on the unknown distribution of the data and thus is unknown as well. Conditional tests replace the unknown null distribution by the conditional null distribution, that is, the distribution of the test statistic given the observed data. This approach is known as permutation tests and was developed by Fisher (Fisher, 1935). Theoretical framework for permutation tests was given by Strasser and Weber(1999). The coin package developed by Hothon et al. (2006, 2008) implements a unified approach for conditional inference via the generic independence test. Because convenient functions for the most prominent problems are available, users will not have to use the extremely flexible procedure. In this article we briefly review the underlying theory from Strasser and Weber (1999) and explain how to transform the data to perform the generic function independence test. Finally it was illustrated with a few real data sets.
We propose a test for independence of bivariate censored data under univariate censorship. To do this, we first introduce a process defined by the difference between bivariate survival function estimator proposed by Lin and Ying (1993) and the product of the product-limit estimators (Kaplan and Meier, 1958) for the marginal survival functions, and derive its asymptotic properties under the null hypothesis of independence. We propose a Cramer-von Mises-type test procedure based on the process . We conduct simulation studies to investigate the finite-sample performance of the proposed test and illustrate the proposed test with a real example.
To test the hypothesis of complete or total independence for a multi-way contingency table, the Pearson chi-squared test statistic is usually employed under Poisson or multinomial models. It is well known that, under the hypothesis, this statistic follows an asymptotic chi-squared distribution. We consider the case where all marginal sums of the contingency table are fixed. Using conditional limit theorems, we show that the chi-squared test statistic has the same limiting distribution for this case.
Journal of the Korean Data and Information Science Society
/
v.14
no.2
/
pp.377-383
/
2003
In this paper, we consider two components system in which the lifetimes follow the bivariate Pareto model with random censored data. We assume that the censoring time is independent of the lifetimes of the two components. We develop large sample tests for testing independence between two components. Also we present simulated study which is the test based on asymptotic normal distribution in testing independence.
Communications for Statistical Applications and Methods
/
v.29
no.5
/
pp.547-559
/
2022
For a chi-squared test, which is a statistical method used to test the independence of a contingency table of two factors, the expected frequency of each cell must be greater than 5. The percentage of cells with an expected frequency below 5 must be less than 20% of all cells. However, there are many cases in which the regional expected frequency is below 5 in general small area studies. Even in large-scale surveys, it is difficult to forecast the expected frequency to be greater than 5 when there is small area estimation with subgroup analysis. Another statistical method to test independence is to use the Bayes factor, but since there is a high ratio of data dependency due to the nature of the Bayesian approach, the low expected frequency tends to decrease the precision of the test results. To overcome these limitations, we will borrow information from areas with similar characteristics and pool the data statistically to propose a pooled Bayes test of independence in target areas. Jo et al. (2021) suggested hierarchical Bayesian pooling models for small area estimation of categorical data, and we will introduce the pooled Bayes factors calculated by expanding their restricted pooling model. We applied the pooled Bayes factors using bone mineral density and body mass index data from the Third National Health and Nutrition Examination Survey conducted in the United States and compared them with chi-squared tests often used in tests of independence.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.