수소제조에 관한 박막형 CdS-TiO2 복합 광촉매계의 표면처리 효과

Effect of Surface Treatment of CdS-TiO2 Composite Photocatalysts with Film Type on Hydrogen Production

  • 장점석 (한국화학연구원 정밀 . 생화학공정개발연구센터) ;
  • 소원욱 (한국화학연구원 정밀 . 생화학공정개발연구센터) ;
  • 김광제 (한국화학연구원 정밀 . 생화학공정개발연구센터) ;
  • 문상진 (한국화학연구원 정밀 . 생화학공정개발연구센터)
  • Jang, Jum-Suk (Fine & Bio-chemical Process R&D Center, Korea Research Institute of Chemical Technology) ;
  • So, Won-Wook (Fine & Bio-chemical Process R&D Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Kwang-Je (Fine & Bio-chemical Process R&D Center, Korea Research Institute of Chemical Technology) ;
  • Moon, Sang-Jin (Fine & Bio-chemical Process R&D Center, Korea Research Institute of Chemical Technology)
  • 발행 : 2002.03.30

초록

CdS and $TiO_2$ nanoparticles were made by the precipitation method and sol-gel method, respectively, and they were mixed mechanically and then treated with the hydrothermal processing. CdS-$TiO_2$ composite particulate films were thus prepared by casting CdS-$TiO_2$ mixed sol onto $SnO_2$ conducting glass and a subsequent heat-treatment at $400^{\circ}C$. Again, the physico-chemical and photoelectrochemical properties of these films were controlled by the surface treatment with $TiCl_4$ aqueous solution. The photocurrents and the hydrogen production rates measured under the present experimental conditions varied in the range of $3.5{\sim}4.5mA/cm^2$ and $0.3{\sim}1.8cc/cm^2$-hr, respectively, and showed the maximum values at the $CdS/[CdS+TiO_2]$ mole ratio of 0.2. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, Probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$ It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

키워드

과제정보

연구 과제 주관 기관 : 에너지관리공단

참고문헌

  1. J. F. Reber and K. Meier : J. Phys.Chem., Vol. 88, 1984, P. 5903. https://doi.org/10.1021/j150668a032
  2. C. A. Linkous, T. E. Mingo, and N. Z.Muradov : Int. J. Hydrgen Energy, Vol.19, No-3, 1994, P. 203. https://doi.org/10.1016/0360-3199(94)90085-X
  3. C. A. Linkous, N. Z. Muradov and S. N.Ramser : Int. J. Hydrgen Energy, Vol. 20,No. 9, 1993, p. 701.
  4. D. C. Bradley, R. C. Mehrotra, and D. P.Gaur : "Metal Alkoxidees", AcaedmicPress, New York, U.S.A., 1978.
  5. A. Taylor : "X-ray Metallography",Wiley, New Yourk, U.S.A., 1983, p.674.
  6. S. A. Naman, N. H. Al-Mishhadani, andL. M. Al-Shamma : Int. J. HydrogenEnergy, Vol. 20, 1995, P. 303. https://doi.org/10.1016/0360-3199(94)E0045-Z
  7. J. S. Jang, H. Y. Chang, W. W. So, Y.W. Rhee, and S. J. Moon : J. of theKorean Hydrogen Energy Society, Vol.11, No. 3, 2000, p. 119.
  8. S. S. Kim, J. S. Jang, W. W. So, K. J.Kim, and S. J. Moon : J. of the KoreanHydrogen Energy Society, Vol. 11, No.4, 2000, P. 161.
  9. M. I. Vucemilovic, N. Vukelic, and T.Rajh : J. Photochemistry and Photobio-logy A : Chemistry, Vol. 42, 1988, p. 157.
  10. K. Matsumoto and K. Takagi : J. of Electrochem. Soc., Vol. 130, No. 3, 1983,p. 423. https://doi.org/10.1149/1.2119724
  11. W. W. So, S. B. Park, and S. J. Moon :J. of Mater. Sci. Lett.., Vol. 17, 1998, P.1219. https://doi.org/10.1023/A:1006554013259
  12. N. Serpone, E. Borgarello, and M. Gratzel: J. of Chem. Soc. Chem.., Commun.,1984, P. 342
  13. S. J. Moon, W. W. So, and H. Y. Chang: J. Electrochem. Soc., Vol. 148, No. 9,2001, E378 https://doi.org/10.1149/1.1390346