Crystal growth and optical properties of Zn and Yb co-doped $LiNbO_3$ rod-shape single crystal by micro-pulling down method

Micro-pulling down법으로 성장시킨 Zn와 Yb를 첨가한 $LiNbO_3$ 단결정의 광학적 특성

  • Her, J.Y. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, H.J. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Yoon, D.H. (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 허지윤 (성균관대학교 신소재공학과) ;
  • 이호준 (성균관대학교 신소재공학과) ;
  • 윤대호 (성균관대학교 신소재공학과)
  • Published : 2009.02.28

Abstract

Yb and Zn co-doped $LiNbO_3$ single crystal rods which had a diameter of 2 mm and a length of $15{\sim}25 mm$ were grown by micro-pulling down (${\mu}-PD$) method. The single crystals were successfully grown and had a uniform diameter and a smooth surface without crack. We realized of $LiNbO_3$ single crystals were hexagonal structure to compare with peaks of $LiNbO_3$ powder by Raman spectra. The threshold level of Zn concentration which is effective for optical damage were observed as about 1 mol% with IR transmission spectra.

Micro-pulling down(${\mu}-PD$)법을 이용하여 직경 2mm, 길이 $15{\sim}25\;mm$의 Zn와 Yb가 첨가된 near-stoichiometric 조성의 $LiNbO_3$ 단결정을 성장하였다. 일정 직경의 매끄럽고 결함이 없는 양질의 단결정임을 확인하였고, 결정 내 첨가된 Zn와 Yb의 조성이 고루 분포되었음을 알 수 있었다. Raman spectra를 통해 나타난 모든 peak은 $LiNbO_3$ power의 peak과 일치함을 알 수 있었고, 이를 통해 Hexagonal 구조의 $LiNbO_3$가 성장되었음을 확인할 수 있었다. Zn의 첨가량 증가에 따른 IR 영역의 투과도 비교를 통해 광손상을 억제에 효과가 있는 Zn 첨가의 역치량이 1 mol%임을 알 수 있었다.

Keywords

References

  1. T. Kawaguchi, D.H. Yoon, M. Minakata, Y. Okada, M. Imaeda and T. Fukuda, "Growth of high crystalline quality LiNbO3 thin films by a new liquid phase epitaxial technique from a solid-liquid coexisting melt," J. Crystal Growth 152 (1995) 87 https://doi.org/10.1016/0022-0248(95)00081-X
  2. T.Y. Fan, A. Cordova-Plaza, M.J.F. Digonnet, R.L. Byer and H.J. Shaw, "Nd : MgO : LiNbO$_3$ spectroscopy and laser devices," Opt. Am. B 3 (1986) 140 https://doi.org/10.1364/JOSAB.3.000140
  3. E. Lallier, J.P. Pocholle, M. Papuchon, M. de Micheli, M.J. Li, Q. He and D.B Ostrowsky, "Efficient Nd : MgO : LiNbO$_3$LiNbO waveguide laser," Electronics Lett. 26 (1990) 927 https://doi.org/10.1049/el:19900605
  4. E. Montoya, J. Capmany, L. E. Bausa, T. Kellner, A. Diening and G. Huber, "Infrared and self-frequency doubled laser action in Yb$_{3+}$ -doped LiNbO$_3$ : MgO" Appl. Phys. Lett. 74 (1999) 3133
  5. T. Tsuboi, S.M. Kaczmarek and G. Boulon, "Spectral properties of Yb$_{3+}$ ions in LiNbO$_3$ single crystals: Influences of other rare-earth ions, OH- ions, and $\gamma$-irradiation," J. Alloys and Compounds 380 (2004) 196 https://doi.org/10.1016/j.jallcom.2004.03.043
  6. T. Bodziony, S.M. Kaczmarek and J. Hanuza, "EPR and optical studies of LiNbO$_3$ : Yb and LiNbO$_3$ : Yb, Pr single crystals," J. Alloys and Compounds 451 (2008) 240 https://doi.org/10.1016/j.jallcom.2007.04.189
  7. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao and N. Suda, "Photorefraction in LiNbO$_3$ as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77 (2000) 2494 https://doi.org/10.1063/1.1318721
  8. T. Kawaguchi, K. Mizuuchi, T. Yoshino, M. Imaeda, K. Yamamoto and T. Kukuda, "Liquid-phase epitaxial growth of Zn-doped LiNbO$_3$ thin films and optical damage resistance for second-harmonic generation," J. Crystal Growth 203 (1999) 173 https://doi.org/10.1016/S0022-0248(99)00084-6
  9. Y. Kong, J. Wen and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction - LiNbO$_3$ : In," Appl. Phys. Lett. 66 (1995) 280 https://doi.org/10.1063/1.113517
  10. V. Mehta and D. Gourier, "Ytterbium-ion pairs in Yb : CsCdBr$_3$; ion-ion interaction and the electronic ground state investigated by electron paramagnetic resonance spectroscopy," J. Phys. Condens. Matter 13 (2001) 4567 https://doi.org/10.1088/0953-8984/13/20/317
  11. M.R. Beghoul, A. Boudrioua, R. Kremer, M.D. Fontana, B. Fougere, C. Darraud, J.C. Vareille and P. Moretti, "Micro-Raman spectroscopy investigation of the electron beam irradiation of LiNbO$_3$ surface for 2D photonic band gap grating inscription," Opt. Materials In press (2008)