Study on the Qualitative Defects Detection in Composites by Optical Infrared Thermography

적외선 열화상 기술을 이용한 복합재료의 결함 검출 정량화 연구

  • 박희상 (한국표준과학연구원 안전측정센터) ;
  • 최만용 (한국표준과학연구원 안전측정센터) ;
  • 박정학 (한국표준과학연구원 안전측정센터) ;
  • 김원태 (공주대학 기계자동차공학부) ;
  • 최원종 (한국항공대학교 항공재료공학과)
  • Received : 2011.02.23
  • Accepted : 2011.04.07
  • Published : 2011.04.30

Abstract

In this paper, infrared thermography measurement technique has been used to develop standard measurement technique for nondestructive testing of composite materials which is widely used in aerospace industries. To increase the defect detection rate, the related experiment used the lock-in IR-thermographiy method. Therefore it is of considerable interest in the field of non-destructive testing for fast discontinuity detection by using ultrasonic lock-in infrared thermography. The result also shows that as the investigation period of light source is lengthened according to the thickness of specimen, the possibility of detecting defects gets higher as well. However, the reason why the result values were not favorable when less than 50 mHz of light source was provided is because it was difficult to detect defects as the defect parts became a state of thermal equilibrium in general when thermal diffusivity affects the entire materials.

본 논문에서는 현재 산업 전반에 널리 사용되고 있는 복합재료(탄소섬유강화플라스틱, 유리섬유강화플라스틱)의 비파과검사를 위한 광적외선 열화상기법을 이용한 복합재료 측정 표준기술개발을 위한 결함(인클루젼, 충간결함) 검출 기술을 실험하였다. 결함의 검출률을 높이기 위하여 위상잠금 방법을 활용하였다. 결과는 시험편의 두께에 따라 광원의 조사시간을 늘릴 경우 결함 검출의 확률이 높아진다는 것을 알 수 있다. 하지만 50 mHz 이하의 광원을 가하였을 때에도 결과값이 좋아지지 않는 점은 열확산이 재료 전체에 영향을 미치게 되면 결함 부위가 전체적으로 열평형 상태가 되어 결함 검출이 어려움을 파악할 수 있었다.

Keywords

References

  1. X. P. V. Maldague, "Theory and practice of infrared technology for nondestructive testing," John Wiley&Sons, New York (2001)
  2. A. Th. Zweschper, A. Dillenz, G. Riegert and G. Busse, "Lock-in thermography methods for the NDT of CFRP aircraft components," NDT.net - February, Vol. 8 No. 2 (2003)
  3. G. Busse, D. Wu and W. Karpen, "Thermal wave imaging with phase sensitive modulated thermography," J Appl Phys, Vol. 71, No. 8, pp. 3962-3965 (1992) https://doi.org/10.1063/1.351366
  4. V. P. Vavilov, "Infrared and thermal testing: heat transfer," Nondestructive Testing Handbook Series III (3rd Ed), X. P. V. Maldague, P. O. Moore Ed., ASNT, Columbus, USA, pp. 54-86 (2001)
  5. D. Wu and G. Busse, "Lock-in thermography for nondestructive evaluation of materials," Rev. Gen. Therm., Vol. 37, pp. 693-703 (1998) https://doi.org/10.1016/S0035-3159(98)80047-0
  6. G. Busse, "Infrared and thermal testing: technique of infrared thermography," Nondestructive Testing Handbook Series III (3rd Ed), X. P. V. Maldague, P. O. Moore Ed., ASNT, Columbus, USA, pp. 318-328 (2001)
  7. M. Y. Choi, K. S. Kang, J. H. Park, W. T. Kim and K. S. Kim, "Defect sizing and location by lock-in photo-infrared thermography," Journal of the Korean Society for Nondestructive Testing, Vol. 27, No. 4, pp. 321-327 (2007)