DOI QR코드

DOI QR Code

Greenhouse Gas Reduction Effect of Improvement of Existing Landfill Gas(LFG) Production by Using Food Waste Water

음폐수 이용 기존 매립지 가스 발생 향상에 따른 온실가스 감축효과

  • Received : 2016.08.11
  • Accepted : 2016.09.19
  • Published : 2016.09.30

Abstract

This study analyzes correlation between methane gas production and injection of food waste water to motivate to expand renewable energy as a way of GHG (Green House Gas) mitigation to achieve the national GHG target proposed for the climate agreement in Paris last year. Pretreatment of food waste water was processed with pH 6 at $35^{\circ}C$ and used the fixed-bed upflow type reactor with the porous media. As a result of operation of pilot-scaled bioreactor with food waste water, the methane gas production was 6 times higher than the methane gas production of control group with rain water. The average production of methane was $56{\ell}/day/m^3$ which is possible to produce $20m^3$ of methane in $1m^3$ of landfill. As a way of energy source, when it is applied to the landfill over $250,000m^3$, it is also able to achieve financial feasibility along with GHG reduction effect. GHG reductions of $250,000m^3$ scale landfill were assessed by registered CDM project and the annual amount of reductions was 40,000~50,000 $tCO_2e$.

본 연구에서는 신기후체제 대비를 위한 온실가스 감축 수단으로써 신재생에너지원인 매립가스의 에너지이용 확대를 위해 현장 매립폐기물을 적용하여 음폐수 주입에 따른 메탄가스 생산량 증대 및 이에 따른 온실가스 감축효과를 분석하고자 하였다. 메탄가스 생산량 증대를 위해 주입하는 음폐수는 $35^{\circ}C$, pH 6으로 전처리한 후 사용하였고, 전처리 반응조는 타공성 담체가 고정된 상향류식 고정층 반응기를 이용하였다. 실제 매립폐기물을 이용한 pilot-scale 바이오리액터 운전결과 음폐수 주입시 강우를 활용한 대조군에 비해 6배의 매립가스 증가율을 보였으며, 평균 매립가스 발생량은 $56{\ell}/day/m^3$으로 $1m^3$ 매립지용적에서 연간 약 $20m^3$의 메탄가스가 생산 가능함을 확인하였다. 이를 에너지원으로 활용할 경우 25만 $m^3$ 이상의 중규모 매립지에 적용시 사업성이 확보될 뿐만 아니라 기 등록되어 있는 매립가스 활용 CDM 사업 및 방법론을 기준으로 폐기물 처리용량 25만 $m^3$ 규모의 매립지를 대상으로 온실가스 감축량을 산출한 결과 연간 약 4~5만 톤의 온실가스 감축효과가 있음을 확인하였다.

Keywords

References

  1. Espagne, E., 2016, Climate Finance at COP21 and After: Lessons Learnt. CEPII, Policy Brief, (9).
  2. "Adoption of The Paris Agreement" 2015, UNFCCC, cp/2015/l.9/Rev.1
  3. S.H.Bae, 2015, "Greenhouse gas reduction goal, 37% reduction from BAU." Electric Power vol. 9(7), pp. 42-43.
  4. S.W. Park, 2016, "Post-2020 Climate Regime and Paris Ageement", Environment Law and Policy, vol. 16, pp. 285-322 https://doi.org/10.18215/envlp.16..201602.285
  5. Augenstein, D. 1992, The Greenhouse Effect and US Landfill Methane. Global Environmental Change, pp. 311-328.
  6. Augenstein, D., R. Yazdani, K. Dahl and R. Moore, 1998, Yolo County Controlled Landfill Project. Proceedings, California Integrated Waste Management Board (CIWMB) Landfill Gas Assessment and Management Symposium, Ontario, CA April. CIWMB, Sacramento, CA.
  7. Augenstein, D. R. Yazdani, L. Sinderson, J. Kieffer M. Byars, 2000, Proceedings, Second International Methane Mitigation Symposium, US EPA and Russian Academy of Sciences (Siberian Branch) Akademgorodok, Novosibirsk, Siberia, Russia. Available from EPA, Washington DC).
  8. Augenstein, D. R. Wise D. L., Wentworth R. L. and Cooney C. L., 1976, Fuel Gas Recovery from Controlled Landfilling of Municipal Waste. Resource Recovery and Conservation 2, pp. 103-117. https://doi.org/10.1016/0304-3967(76)90002-0
  9. Halvadakis, C. A. Robertson and J. Leckie. 1983, Landfill Methanogenesis, Literature Review and Critique. Stanford Civil Engineering Department Report 271. Available from US National Technical Information Service.
  10. D. T. Sponza, O. N. 2004, "Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors", Process Biochemistry, vol. 39, pp. 2157-2165 https://doi.org/10.1016/j.procbio.2003.11.012
  11. I. San, T. T. Onay, 2001, "Impact of various leachate recirculation regimes on municipal solid waste degradation", Journal of Hazardous Materials B, vol. 87, pp. 259-271 https://doi.org/10.1016/S0304-3894(01)00290-4
  12. D. R. Reinhart, 1996, "Full-scale experiences with leachate recirculating landfills: Case studies", Waste Management and Research, vol. 14, pp. 347-365 https://doi.org/10.1177/0734242X9601400403
  13. D. R. Reinhart, A. B. Al-Yousfi, 1996, "The impact of leachate recirculation on municipal solid waste landfill operating characteristics", Waste Management and Research, vol. 14, pp. 337-346 https://doi.org/10.1177/0734242X9601400402
  14. D. R. Reinhart, P. T. McCreanor, T. Townsend, 2002, "The bioreactor landfill: its status and future", Waste Management and Research, vol. 20, pp. 172-186 https://doi.org/10.1177/0734242X0202000209
  15. Yuen, S.T.S., 2001. Bioreactor landfills: do they work? In: Geoenvironment 2001: 2nd ANZ Conference on Environmental Geotechnics, Newcastle, Australia, November.
  16. Pohland F. G., 1980, "Leachate recycling as landfill management option", Journal of Environmental Engineering, vol. 106(6), pp. 1057-1069
  17. Pohland, F.G., 1995. Landfill Bioreactors, Historical Perspective, Fundamental Principles, and New Horizons in Design and Operations. US EPA/600/R-95/146. US Environmental Protection Agency Seminar Publication: Landfill Bioreactor Design and Operation. Wilmington D.E., Washington.
  18. K.S. Moon, et al., 2014, Charcaterristic of Anaerobic Acid Fermentation with Food Waste leachate by Reactor Type of Retentuon Time for Landfill Site Injection, Journal of Energy Engineering, Vol. 23, No. 3, pp.125-131 https://doi.org/10.5855/ENERGY.2014.23.3.125
  19. 2012 Korea waste statistics, 2013, MOE of Korea
  20. Project 0851;Daegu Bangcheon-Ri Landfill Gas CDM Project, http://cdm.unfccc.int