DOI QR코드

DOI QR Code

Electrical Conduction Mechanism in the Insulating TaNx Film

절연성 TaNx 박막의 전기전도 기구

  • Ryu, Sungyeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 류성연 (서울과학기술대학교 신소재공학과) ;
  • 최병준 (서울과학기술대학교 신소재공학과)
  • Received : 2016.11.14
  • Accepted : 2016.11.28
  • Published : 2017.01.27

Abstract

Insulating $TaN_x$ films were grown by plasma enhanced atomic layer deposition using butylimido tris dimethylamido tantalum and $N_2+H_2$ mixed gas as metalorganic source and reactance gas, respectively. Crossbar devices having a $Pt/TaN_x/Pt$ stack were fabricated and their electrical properties were examined. The crossbar devices exhibited temperature-dependent nonlinear I (current) - V (voltage) characteristics in the temperature range of 90-300 K. Various electrical conduction mechanisms were adopted to understand the governing electrical conduction mechanism in the device. Among them, the PooleFrenkel emission model, which uses a bulk-limited conduction mechanism, may successfully fit with the I - V characteristics of the devices with 5- and 18-nm-thick $TaN_x$ films. Values of ~0.4 eV of trap energy and ~20 of dielectric constant were extracted from the fitting. These results can be well explained by the amorphous micro-structure and point defects, such as oxygen substitution ($O_N$) and interstitial nitrogen ($N_i$) in the $TaN_x$ films, which were revealed by transmission electron microscopy and UV-Visible spectroscopy. The nonlinear conduction characteristics of $TaN_x$ film can make this film useful as a selector device for a crossbar array of a resistive switching random access memory or a synaptic device.

Keywords

References

  1. C. C. Chang, J. S. Jeng and J. S. Chen, Thin Solid Films, 413, 46 (2002). https://doi.org/10.1016/S0040-6090(02)00342-5
  2. J. Kwon and Y. J. Chabal, Appl. Phys. Lett., 96, 2008 (2010).
  3. Y. Zhao and G. Lu, Phys. Res. B, 79, 214104 (2009). https://doi.org/10.1103/PhysRevB.79.214104
  4. S. M. Kim, G. R. Lee and J. J. Lee, Jpn. J. Appl. Phys., 47, 6953 (2008). https://doi.org/10.1143/JJAP.47.6953
  5. S. I. Nakao, M. Numata and T. Ohmi, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 38, 2401 (1999). https://doi.org/10.1143/JJAP.38.2401
  6. K. Kim and J. Choi, in Proceedings of Non-Volatile Semiconductor Memory Workshop (Monterey, CA, February 2006) (IEEE, USA, 2006) p.9.
  7. L. Yu, C. Stampfl, D. Marshall, T. Eshrich, V. Narayanan, J. Rowell, N. Newman and A. Freeman, Phys. Rev. B, 65, 245110 (2002). https://doi.org/10.1103/PhysRevB.65.245110
  8. A. Malmros, K. Andersson and N. Rorsman, Thin Solid Films, 520, 2162 (2012). https://doi.org/10.1016/j.tsf.2011.09.050
  9. A. Engel, A. Aeschbacher, K. Inderbitzin, A. Schilling, K. Il'In, M. Hofherr, M. Siegel, A. Semenov and H. W. Hubers, Appl. Phys. Lett., 100, 1 (2012).
  10. B. J. Choi, J. Zhang, K. Norris, G. Gibson, K. M. Kim, W. Jackson, M. X. M. Zhang, Z. Li, J. J. Yang and R. S. Williams, Adv. Mater., 28, 356 (2016). https://doi.org/10.1002/adma.201503604
  11. T. H. Park, S. J. Song, H. J. Kim, S. G. Kim, S. Chung, B. Y. Kim, K. J. Lee, K. M. Kim, B. J. Choi and C. S. Hwang, Phys. Status Solidi Rapid Res. Lett., 9, 362 (2015). https://doi.org/10.1002/pssr.201510110
  12. T. H. Park, S. J. Song, H. J. Kim, S. G. Kim, S. Chung, B. Y. Kim, K. J. Lee, K. M. Kim, B. J. Choi and C. S. Hwang, Sci. Rep., 5, 15965 (2015). https://doi.org/10.1038/srep15965
  13. B. J. Choi, A. C. Torrezan, J. P. Strachan, P. G. Kotula, A. J. Lohn, M. J. Marinella, Z. Li, R. S. Williams and J. J. Yang, Adv. Funct. Mater., 26, 5290 (2016). https://doi.org/10.1002/adfm.201600680
  14. F. Chiu, Adv. Mater. Sci. Eng., 2014, 578168 (2014).
  15. S. Somani, A. Mukhopadhyay and C. Musgrave, J. Phys. Chem. C, 115, 11507 (2011). https://doi.org/10.1021/jp1059374
  16. Z. Fang, H. C. Aspinall, R. Odedra and R. J. Potter, J. Cryst. Growth, 331, 33 (2011). https://doi.org/10.1016/j.jcrysgro.2011.07.012
  17. B. B. Burton, A. R. Lavoie and S. M. George, J. Electrochem. Soc., 155, D508 (2008). https://doi.org/10.1149/1.2908741
  18. M. Ritala, P. Kalsi, D. Riihela, K. Kukli, M. Leskela and J. Jokinen, Chem. Mater., 11, 1712 (1999). https://doi.org/10.1021/cm980760x
  19. H. Kim, A. J. Kellock and S. M. Rossnagel, J. Appl. Phys., 92, 7080 (2002). https://doi.org/10.1063/1.1519949
  20. H.-S. Chung, J.-D. Kwon and S.-W. Kang, J. Electrochem. Soc., 153, C751 (2006). https://doi.org/10.1149/1.2344834
  21. C. M. Fang, E. Orhan, G. A. de Wijs, H. T. Hintzen, R. A. de Groot, R. Marchand, J.-Y. Saillard and G. de With, J. Mater. Chem., 11, 1248 (2001). https://doi.org/10.1039/b005751g