DOI QR코드

DOI QR Code

Study on the Change of Electrical Properties of two-dimensional SnSe2 Material via Cl doping under a High Temperature Condition

이차원 SnSe2 전자소재의 Cl 도핑에 따른 고온 전도 물성 고찰

  • Moon, Seung Pil (KEPCO Research Institute, Korea Electric Power Corporation) ;
  • Kim, Sung Wng (Department of Energy Science, Sungkyunkwan University) ;
  • Sohn, Hiesang (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Tae Wan (KEPCO Research Institute, Korea Electric Power Corporation) ;
  • Lee, Kyu Hyoung (Department of Nano Applied Engineering, Kangwon National University) ;
  • Lee, Kimoon (Department of Physics, Kunsan National University)
  • 문승필 (한국전력공사 전력연구원) ;
  • 김성웅 (성균관대학교 에너지과학과) ;
  • 손희상 (광운대학교 화학공학과) ;
  • 김태완 (한국전력공사 전력연구원) ;
  • 이규형 (강원대학교 나노응용공학과) ;
  • 이기문 (군산대학교 물리학과)
  • Received : 2017.06.08
  • Accepted : 2017.06.26
  • Published : 2017.06.30

Abstract

We study on the change of electrical properties of two-dimensional (2D) $SnSe_2$ materials with respect to Cl doping as $SnSe_{1.994}Cl_{0.006}$ under a high temperature condition. (300~450 K) By the simple solid-state reaction method, non-and Cl-doped 2D $SnSe_2$ materials are successfully synthesized with negligible impurities as confirmed by X-ray diffraction. From the temperature dependence of resistivity, it is observed that the conduction mechanism is changed from hopping to degenerate conduction with Cl doping. By Hall effect measurement, an increase on electron carrier concentration from ${\sim}7{\times}10^{16}$ to ${\sim}3{\times}10^{18}cm^{-3}$ with Cl doping verifies that Cl is an effective electron donor which results in the encouraged carrier concentration. Detailed analysis for temperature dependent Hall mobility reveals that the electrical transports in high temperature regime are governed by the grain boundary-controlled mechanism for non-doped $SnSe_2$, which is effectively suppressed by Cl-doping as entering metallic transport regime.

Cl 불순물 도핑에 따른 $SnSe_2$ 이차원 전자소재의 고온(300~450 K) 전도 물성 변화를 고찰하였다. 고상합성법을 통하여, 도핑이 없는 $SnSe_2$ 소재와 Cl이 도핑된 $SnSe_{1.994}Cl_{0.006}$ 소재를 합성하였으며, X선 회절 실험을 통하여, 두 재료 모두 불순물 없는 단일상이 형성되었음을 확인하였다. 비저항의 온도의존성 측정을 통하여, 전기 전도 mechanism이 Cl 도핑에 의해 hopping 전도에서 축퇴 전도로의 전이가 일어남을 관찰할 수 있었으며, 홀효과 측정을 통해 그러한 전도 mechanism의 전이가, Cl의 효과적인 donor 역할에 따른 자유전자의 농도 증가에서 기인한 것임을 확인하였다. 온도에 따른 전자이동도의 변화 분석을 통하여, 도핑이 없는 $SnSe_2$의 고온 전기 전도는 grain boundary 산란이 지배적인 영향을 미치는 반도체 전도 특성을 보이는 반면, Cl 도핑에 따라 grain boundary 산란 효과가 저하되는 금속 전도 특성을 보인다는 것을 알 수 있었다.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. Y. H. Ko, K. G. Choi, S. W. Kim, D. Y. Yu, J. H. Bang, and T. S. Kim, "Trends of researches and technologies of electronics packaging using graphene", J. Microelectron. Packag. Soc. 23(2), 1 (2016). https://doi.org/10.6117/kmeps.2016.23.2.001
  3. M. Xu, T. Liang, M. Shi, and H. Chen, "Graphene-like two-dimensional materials", Chem. Rev. 113, 3766 (2013). https://doi.org/10.1021/cr300263a
  4. M. Chhowalla, H. S. Shin, G. Eda, L. J, Li, K. P. Loh, and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets", Nature Chem., 5, 263 (2013). https://doi.org/10.1038/nchem.1589
  5. Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides", Nature Nanotechnol., 7(11), 699 (2012). https://doi.org/10.1038/nnano.2012.193
  6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer $MoS_2$ transistors", Nature Nanotechnol., 6(3), 147 (2011). https://doi.org/10.1038/nnano.2010.279
  7. R. S. Muller, T. I. Kamins, and M. Chan, "Device Electronics for Integrated Circuits", 3rd ed. Wiley (2003).
  8. M. Chhowalla, D. Jena, and H. Zhang, "Two-dimensional semiconductors for transistors", Nat. Rev. Mater., 1, 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52
  9. D. Jariwala, V. K. Samgwam, L. J. Lauhon, T. J. Marks, and M. C. Hersam, "Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides", ACS Nano, 8(2), 1102 (2014). https://doi.org/10.1021/nn500064s
  10. S. I. Kim, S. W. Hwang, S. Y. Kim, W.-J. Lee, D. W. Jung, K.-S. Moon, H. J. Park, Y.-J. Cho, Y.-H. Cho, J.-H. Kim, D.-J. Yun, K. H. Lee, I.-T. Han, K. M. Lee, and Y. C. Sohn, "Metallic conduction induced by direct anion site doping in layered $SnSe_2$", Sci. Rep., 6, 19733 (2016). https://doi.org/10.1038/srep19733
  11. B. Palosz, and E. Salje, "Lattice parameters and spontaneous strain in $AX_2$ polytypes: $CdI_2$, $PbI_2$, $SnS_2$ and $SnSe_2$", J. Appl. Cryst. 22, 622 (1989). https://doi.org/10.1107/S0021889889006916
  12. C. Kittel, "Introduction to Solid State Physics", 8th ed. Wiley (2005).
  13. B. C. Shin, C. W. Hwang, S. K. Oh, S. C. Choi, and D. K. Paek, "Thermoelectric properties of the ($Pb_{1-x}Sn_x$)Te sintered by AC applied hot pressing", J. Microelectron. Packag. Soc. 7(4), 1 (2000).
  14. S. O. Kasap, "Principles of Electronic Materials and Devices", 2nd ed. McGraw Hill (2002).
  15. L. Liu, R. Liang, J. Wang, and J. Xu, "Ultra-high aspect ratio poly-Si FinFET using an improved spacer formation technique", Superlattices Microstruct., 104, 149 (2017). https://doi.org/10.1016/j.spmi.2017.02.021