DOI QR코드

DOI QR Code

Removal Properties of Nickel and Copper ions by Activated Carbon and Carbon Nanotube

활성탄과 카본나노튜브를 이용한 수용액상의 니켈과 구리 제거 특성

  • Jung, Yong-Jun (Department of Environmental Engineering, Catholic University of Pusan)
  • 정용준 (부산가톨릭대학교 환경공학과)
  • Received : 2018.08.27
  • Accepted : 2018.11.03
  • Published : 2018.11.30

Abstract

This experiment was carried out with the purpose of testing nickel and copper adsorption abilities of multi wall carbon nanotube (MWCNT) and activated carbon. In the acidic condition, only MWCNT was effective for removing nickel and copper ion in the aqueous phase while activated carbon rarely remove them. The MWCNT and heavy metals adsorption reaction followed pseudo-first order kinetic. When the initial pH value was neutral (pH=7), nickel was rapidly removed by MWCNT and activated carbon in 4 hr (99.02 %, 80.30 %). Also, copper ion was rapidly removed by both adsorbents in 4 hr when the initial pH was 7 (100 %, 99.73 %). Increasing of adsorbent dosages affect the pH evolution and heavy metal ions removal (0 ~ 99%). Also, oxidation pretreatment enhanced the adsorption efficiency of MWCNT.

본 연구는 탄소나노튜브(MWCNT)와 활성탄을 이용한 니켈과 구리의 흡착특성을 평가하였다. 산성조건에서 활성탄의 제거성능이 낮은 반면, MWCNT만 니켈과 구리를 흡착 제거하는데 효율적이었다. MWCNT와 중금속의 흡착반응은 유사 일차반응식을 따랐다. 초기 pH가 중성일 때, 니켈은 MWCNT에 의해 신속히 제거되었고, 활성탄은 4시간에 각각 99.02%와 80.30%를 나타냈다. 또한, 구리이온은 초기 pH가 중성일 때 4시간내에 효율적으로 제거되었다. 흡착제 주입량을 증가함에 따라 pH가 증가하였고, 중금속 제거율도 증가하였다. 또한, 산화 전처리 공정은 MWCNT의 중금속 제거율을 증가시켰다.

Keywords

HKSJBV_2018_v20n4_410_f0001.png 이미지

Fig. 1. Scanning electron microscope and energy dispersive X-ray patterns of (a) MWCNT, and (b) activated carbon.

HKSJBV_2018_v20n4_410_f0002.png 이미지

Fig. 2. Effect of contact time on the adsorption of Ni (a) and Cu (b) from aqueous solution by MWCNT and activated carbon (experimental conditions: pH0=2±0.1; Adsorbent dosage 1.2 g; 25 ℃; 20 rpm; metal ion concentration = 100 mg/L; n=2)

HKSJBV_2018_v20n4_410_f0003.png 이미지

Fig. 3. Effect initial pH on the adsorption of heavy metals and pH evolution of Ni (a, c) and Cu (b, d) solutions (experimental conditions: pH0=2±0.1, 7±0.1; Adsorbent dosage 1.2 g; 25 ℃; 20 rpm; metal ion concentration = 100 mg/L; n=2)

HKSJBV_2018_v20n4_410_f0004.png 이미지

Fig. 4. Effect of adsorbent dosage on the adsorption and pH evolution of Ni (a, c) and Cu (b, d) solution by each adsorbent (experimental conditions: pH0=1.9±0.1, Adsorbent dosage 0.2 g, 0.4 g, 0.6 g, 0.8 g, 1.0 g, 1.2 g; 25 ℃; 20 rpm; metal ion concentration = 100 mg/L; n=2)

HKSJBV_2018_v20n4_410_f0005.png 이미지

Fig. 5. Effect of UV/H2O2 pretreatment on the removal of Ni and Cu from synthesized waste water (experimental conditions: pH0=7.0±0.1; 25 ℃; 20 rpm; [H2O2]0: 1.9 mg/L; [CN]0 = 2.4 mg/L; [Ni]0 = 132 mg/L; [Cu]0 = 148 mg/L; UV-C intensity: 1.2 mW/cm2; 2hr; n=2)

Table 1. Characteristics of the adsorbents

HKSJBV_2018_v20n4_410_t0001.png 이미지

Table 2. Pseudo-first order rate constant and R2 value for the adsorption of Ni and Cu by MWCNT

HKSJBV_2018_v20n4_410_t0002.png 이미지

References

  1. Abou-Elela, S. I., Ibrahim, H. S., Abou-Taleb, E. (2008). Heavy metal removal and cyanide destruction in the metal plating industry: An integrated approach from Egypt. The Environmentalist, 28(3), pp. 223-229. [https://doi.org/10.1007/s10669-007-9132-6]
  2. Aksu, Z., Calik, A. (1999). Adsorption of iron (III)-cyanide complex ions to granular activated carbon. J. of Envi. Sci. & Health Part A, 34(10), pp. 2087-2103. [https://doi.org/10.1080/10934529909376949]
  3. Amarasinghe, B. M. W. P. K., Williams, R. A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chemical Engineering J., 132(1), pp. 299-309.[https://doi.org/10.1016/j.cej.2007.01.016]
  4. Barros, F. C., Sousa, F. W., Cavalcante, R. M., Carvalho, T. V., Dias, F. S., Queiroz, D. C., Nascimento, R. F. (2008). Removal of Copper, Nickel and Zinc Ions from Aqueous Solution by Chitosan-8-Hydroxyquinoline Beads. Clean-Soil, Air, Wat., 36(3), pp. 292-298. [https://doi.org/10.1002/clen.200700004]
  5. Bernard, E., Jimoh, A., Odigure, J. O. (2013). Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Res. J. of Chem. Sci., 3(8), pp. 3-9.[ISSN 2231-606X]
  6. Chung, S., Kim, S., Kim, J. O., Chung, J. (2014). Feasibility of Combining Reverse Osmosis-Ferrite Process for Reclamation of Metal Plating Wastewater and Recovery of Heavy Metals. Ind. & Eng. Chem. Res., 53(39), pp. 15192-15199.[https://doi.org/10.1021/ie502421b]
  7. Dabrowski, A. (2001). Adsorption-from theory to practice. Advances in col. and inter. sci., 93(1), pp. 135-224. [https://doi.org/10.1016/S0001-8686(00)00082-8]
  8. Duran, A., Monteagudo, J. M., Sanmartin, I., Garcia-Pena, F., Coca, P. (2009). Treatment of IGCC power station effluents by physico-chemical and advanced oxidation processes. J. of envi. manag., 90(3), pp. 1370-1376. [https://doi.org/10.1016/j.jenvman.2008.08.002]
  9. Fu, F., Wang, Q. (2011). Removal of heavy metal ions from waste waters: a review. J. of envi. manag., 92(3), pp. 407-418.[https://doi.org/10.1016/j.jenvman.2010.11.011]
  10. Jeon, C., Park, J. Y., Yoo, Y. J. (2001). Removal of heavy metals in plating wastewater using carboxylated alginic acid. Kor. J. Chem. Eng., 18(6), pp. 955-960. [Korean Literature][https://doi.org/10.1007/BF02705625]
  11. Li, Y. H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wei, B. (2003). Competitive adsorption of $Pb^{2+}$, $Cu^{2+}$ and $Cd^{2+}$ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41(14), pp. 2787-2792. [https://doi.org/10.1016/S0008-6223(03)00392-0]
  12. Li, Y., Zeng, X., Liu, Y., Yan, S., Hu, Z., Ni, Y. (2003). Study on the treatment of copper-electroplating wastewater by chemical trapping and flocculation. Sep. Puri. Tech., 31(1), pp. 91-95.[https://doi.org/10.1016/S1383-5866(02)00162-4]
  13. Liang, X., Zang, Y., Xu, Y., Tan, X., Hou, W., Wang, L., Sun, Y. (2013). Sorption of metal cations on layered double hydroxides. Col. and Surf. A: Physicochemical and Engineering Aspects, 433, pp. 122-131. [https://doi.org/10.1016/j.colsurfa.2013.05.006]
  14. Lohani, M. B., Singh, A., Rupainwar, D. C., Dhar, D. N. (2008). Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg (II) from aqueous solutions. J. of Haz. mat., 159(2), pp. 626-629.[https://doi.org/10.1016/j.jhazmat.2008.02.072]
  15. Malamis, S., Katsou, E., Kosanovic, T., Haralambous, K. J. (2012). Combined adsorption and ultrafiltration processes employed for the removal of pollutants from metal plating wastewater. Sep. Sci. Tech., 47(7), pp. 983-996.[https://doi.org/10.1080/01496395.2011.645983]
  16. Nadakavukaren, A., 2011, Our global environment: A health perspective. Waveland Press.[ISBN-13:978-1577666868]
  17. Rao, M. M., Ramesh, A., Rao, G. P. C., Seshaiah, K. (2006). Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J. of Haz. mat., 129(1), pp. 123-129.[https://doi.org/10.1016/j.jhazmat.2005.08.018]
  18. Rengaraj, S., Moon, S. H. (2002). Kinetics of adsorption of Co (II) removal from water and wastewater by ion exchange resins. Wat. Res., 36(7), pp. 1783-1793. [https://doi.org/10.1016/S0043-1354(01)00380-3]
  19. Ritchie, S. M. C., Bhattacharyya, D. (2002). Membrane-based hybrid processes for high water recovery and selective inorganic pollutant separation. J. of Haz. mat., 92(1), pp. 21-32.[https://doi.org/10.1016/S0304-3894(01)00370-3]
  20. Salam, M. A., Al-Zhrani, G., Kosa, S. A. (2012). Simultaneous removal of copper (II), lead (II), zinc (II) and cadmium (II) from aqueous solutions by multi-walled carbon nanotubes. Comptes Rendus Chimie, 15(5), pp. 398-408.[https://doi.org/10.1016/j.crci.2012.01.013]
  21. Soco, E., Kalembkiewicz, J. (2013). Adsorption of nickel (II) and copper (II) ions from aqueous solution by coal fly ash. J. of Env. Chem. Eng., 1(3), pp. 581-588.[https://doi.org/10.1016/j.jece.2013.06.029]
  22. Tofighy, M. A., Mohammadi, T. (2011). Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. of Haz. Mat., 185(1), pp. 140-147. [https://doi.org/10.1016/j.jhazmat.2010.09.008]
  23. Tunay, O., Kabdasli, N. I. (1994). Hydroxide precipitation of complexed metals. Wat. Res., 28(10), pp. 2117-2124. [https://doi.org/10.1016/0043-1354(94)90022-1]
  24. Wahi, R., Ngaini, Z., Jok, V. U. (2009). Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch. World Applied Sci. J., 5, pp. 84-91.[ISSN 1818-4952]
  25. Young, C. A., Jordan, T. S. (1995). Cyanide remediation: current and past technologies. In Proceedings of the 10th Annual Conference on Hazardous Waste Research (pp. 104-129), Kansas State University: Manhattan, KS.