DOI QR코드

DOI QR Code

Performance analysis of Coaxial Propeller for Multicopter Type PAV (Personal Air Vehicle)

멀티콥터형 PAV(Personal Air Vehicle)의 동축반전 프로펠러에 대한 성능해석

  • Kim, Young Tae (Department of Aeronautical System Engineering, Hanseo University) ;
  • Park, Chang Hwan (Department of Aeronautical System Engineering, Hanseo University) ;
  • Kim, Hak Yoon (Department of Aeronautical System Engineering, Hanseo University)
  • 김영태 (한서대학교 항공시스템공학과) ;
  • 박창환 (한서대학교 항공시스템공학과) ;
  • 김학윤 (한서대학교 항공시스템공학과)
  • Received : 2019.03.12
  • Accepted : 2019.05.10
  • Published : 2019.06.30

Abstract

Performance analyses were performed on a propeller developed for use in a PAV (Personal Air Vehicle) under 600 kg Maximum Take-Off Weight (MTOW). The actuator disc theory and CFD analyses were used to estimate the hovering time with regards to MTOW variation for a given battery weight. The interference induced power factor kint was introduced to account for the effect of flow interference between the propellers and to estimate the performance of counter-rotating propellers. The Maximum Figure of Merit (FM) value of the propeller pitch was determined and the design RPM range for the required power inversely obtained from the CFD results. Previous research indicate that the flight time of large multi-copter is limited by the available battery energy density. Similarly, the propeller pitch settings and spacing are important factors in reducing the kint value.

최대이륙중량 600 kg급의 멀티콥터형 PAV(Personal Air Vehicle)에 사용될 프로펠러의 성능해석을 하였다. 배터리의 중량을 고정하고 최대중량 변화에 따른 정지비행 가능 시간을 추정하기 위하여 Actuator disc 해석과 CFD 해석을 병행하여 수행하였고 결과를 비교하였다. 동축반전형 프로펠러 사이의 유동간섭 영향을 고려하기 위하여 유도동력 간섭계수(kint)를 도입하였고, 이를 이용하여 하나의 프로펠러에 대한 해석 결과로 동축 반전 프로펠러의 성능을 추정하였다. 피치각을 변화시키며 전산해석을 수행하여 Figure of Merit (FM)이 최대가 되는 피치각의 범위를 찾았으며 요구추력에 대한 프로펠러의 설계 RPM을 역 추적하였다. 연구결과는 현용 배터리의 비에너지 밀도로 대형 멀티콥터의 비행시간은 매우 한정적이며 프로펠러 간섭계수의 값을 줄이기 위한 피치 및 프로펠러 간격 설정이 중요하다는 것을 보여준다.

Keywords

OJSSBW_2019_v13n3_56_f0001.png 이미지

Fig. 1 MTOW 600kg PAV to be considered

OJSSBW_2019_v13n3_56_f0002.png 이미지

Fig. 2 Propeller geometry and dimensions

OJSSBW_2019_v13n3_56_f0003.png 이미지

Fig. 3 Computational grids generation

OJSSBW_2019_v13n3_56_f0004.png 이미지

Fig. 4 Computational domain configuration

OJSSBW_2019_v13n3_56_f0005.png 이미지

Fig. 5 Propeller torque correlation for increasing pitch by CFD

OJSSBW_2019_v13n3_56_f0006.png 이미지

Fig. 6 Figure of merit variation for increasing pitch

OJSSBW_2019_v13n3_56_f0007.png 이미지

Fig. 7 RPM and pitch correlation for given MTOW

OJSSBW_2019_v13n3_56_f0008.png 이미지

Fig. 8 Comparison of hovering power in terms of MTOW

OJSSBW_2019_v13n3_56_f0009.png 이미지

Fig. 9 Comparison of hovering time in terms of MTOW

OJSSBW_2019_v13n3_56_f0010.png 이미지

Fig. 10 Tip vortex and hub backflow of propeller

Table 1 Results of mesh test

OJSSBW_2019_v13n3_56_t0001.png 이미지

Table 2 Hovering time in terms of weight

OJSSBW_2019_v13n3_56_t0002.png 이미지

Table 3 Hovering power in terms of weight, θ75 = 4˚~16˚, (kNm/s)

OJSSBW_2019_v13n3_56_t0003.png 이미지

References

  1. https://diydrones.com/profile/jpkh
  2. https://www.volocopter.com/en/product/
  3. " First passenger drone makes its debut at CES," The ssociated Press. The Guardian. Retrieved, NO. 2, 2016, from http://www.thguardian.com/technology/2016/jan/07/first-passenger-drone-makes-world-debut.
  4. https://www.davidullman.com/air-taxi-visions
  5. W. Johnson, C. Silva, and E. Solis, "Concept Vehicles for VTOL Air Taxi Operations," American Helicopter Society Technical Conference on Aeromechanics Design for Transformative Vertical Flight, San Francisco, CA, Jan 16 - 19, 2018.
  6. C. P. Coleman, "A survey of theoretical and experimental coaxial rotor aerodynamic research," NASA Technical Paper, Vol. 3675, National Aeronautics and Space Administration, Ames Research Center, 1997.
  7. https://vahana.aero/
  8. M. Tariq, A. I. Maswood, C. J. Gajanayake, and A. K. Gupta, "Aircraft batteries : current trend towards more electric aircraft," IET Electr. Syst. Transp, Vol. 7, no. 2, pp. 93-103, 2017. https://doi.org/10.1049/iet-est.2016.0019
  9. P. R. Payne, Helicopter Dynamics and Aerodynamics, The MacMillan Company, New York, pp.90-98, 1959.
  10. https://tech.nikkeibp.co.jp/dm/english/NEWS_EN/
  11. J. G. Leishman, and M. Syal, "Figure of merit definition for coaxial rotors," Journal of the American Helicopter Society, Vol. 53, no. 3, pp. 290-300, 2008. https://doi.org/10.4050/JAHS.53.290
  12. STAR-CCM+ Ver.13.03.11 User Guide
  13. W. Choi, J. H. Kim, K. T. Lee, C. W. Park, "The study on the propeller aerodynamic characteristic of micro aerial vehicle using the MRF method," KSCFE Conference 2010, pp.32-36, 2010
  14. M. S. Lee, S. S. Yoo, D. Y. Hwang, B. Y. Han, and H. K. Park, "CFD Analysis of aerodynamic characteristics of HWAT Based on the different twist angle using CFD," KSCFE Conference 2009, no. 11, pp.19-26, 2009.
  15. H. A. Kutty, and P. Rajendran, "3D CFD Simulation and Experimental Validation of small APC Slow Flyer Propeller Blade," MDPI Journal, Aerospace Vol. 4, Issue 1. 2017.
  16. M. C. Sim, and K. T. Lee, "The hovering performance study for the multi-copter propeller using MRF method," KSAS Spring Conference 2018, no. 4, pp. 10-12, 2018.
  17. R. H. Stroub, J. P. Rabbott, and C. F. Niebanck, "Rotor Blade Tip Shape Effects on Performance and Control Loads from Full‐Scale Wind Tunnel Testing," Journal of the American Helicopter Society, Volume 24, Number 4, (1), pp. 28-35 October 1979. https://doi.org/10.4050/JAHS.24.28