Utilizing a structure of operations known as Dissection-Motion-Operations (DMO), a set of mathematics propositions or area-formulas in school mathematics will be introduced through shape-to-shape transforms. The underlying theme for DMO is problem-solving through visual reasoning and proving manipulatively or electronically vs. rote learning and memorization. Visual reasoning is the focus here where two operations that constitute DMO are utilized. One operation is known as Dissection (or Decomposition) operation that operates on a given region in 2D or 3D and dissects it into a number of subregions. The second operation is known as Motion (or Composition) operation applied on the resultant sub-regions to form a distinct area (or volume)-equivalent region. In 2D for example, DMO can transform a given polygon into a variety of new and distinct polygons each of which is area-equivalent to the original polygon (cf [Rahim, M. H. & Sawada, D. (1986). Revitalizing school geometry through Dissection-Motion Operations. Sch. Sci. Math. 86(3), 235-246] and [Rahim, M. H. & Sawada, D. (1990). The duality of qualitative and quantitative knowing in school geometry, International Journal of Mathematical Education in Science and Technology 21(2), 303-308]).