• Title/Summary/Keyword: 곱셈에 관한 역원

Search Result 6, Processing Time 0.02 seconds

Algorithms for Computing Inverses in Finite Fields using Special ONBs (특수한 정규기저를 이용한 유한체위에서의 역원 계산 알고리즘에 관한 연구)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.867-873
    • /
    • 2014
  • Since the computation of a multiplicative inverse using MONB includes many squarings and thus calculating inverse is expensive, we, in this paper, propose a low cost inverse algorithm requiring $nb(2^nm-1)+w(2^nm-1)-2$ multiplications and $2^n-1$ squarings to compute an inverse in $GF(2^{2^nm})^*$ using special normal basis over $GF(2^{2^n})$, and give some implementation results using the algorithm and, show that the timing results of our implementation is faster than that of Itoh et al.'s method.

On Implementations of Algorithms for Fast Generation of Normal Bases and Low Cost Arithmetics over Finite Fields (유한체위에서 정규기저의 고속생성과 저비용 연산 알고리즘의 구현에 관한 연구)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.621-628
    • /
    • 2017
  • The efficiency of implementation of the arithmetic operations in finite fields depends on the choice representation of elements of the field. It seems that from this point of view normal bases are the most appropriate, since raising to the power 2 in $GF(2^n)$ of characteristic 2 is reduced in these bases to a cyclic shift of the coordinates. We, in this paper, introduce our algorithm to transform fastly the conventional bases to normal bases and present the result of H/W implementation using the algorithm. We also propose our algorithm to calculate the multiplication and inverse of elements with respect to normal bases in $GF(2^n)$ and present the programs and the results of H/W implementations using the algorithm.

A Search for an Alternative Articulation and Treatment on the Complex Numbers in Grade - 10 Mathematics Textbook (고등학교 10-가 교과서 복소수 단원에 관한 논리성 분석연구)

  • Yang, Eun-Young;Lee, Young-Ha
    • School Mathematics
    • /
    • v.10 no.3
    • /
    • pp.357-374
    • /
    • 2008
  • The complex number system is supposed to introduce first chapter in the first grade of high school. When number system is expanded to complex numbers, the main aim is to understand preservation of algebraic structure with regard to the flow of curriculum and textbook. This research reviewed overall alternative articulation and treatment of textbooks from a logical viewpoint. Two research questions are developed below. First, in the structure of the current curriculum, when we consider student's 'level', how are the alternative articulation and treatment of textbooks in complex unit on a logical point of view? Second, What are more logical alternative articulation and treatment? What alternative articulation and treatment are suitable for a running goal? and what are the improvement which is definitive?

  • PDF

AN ALGORITHM FOR PRIMITIVE NORMAL BASIS IN FINITE FIELDS (유한체에서의 원시 정규기저 알고리즘의 구현과 응용에 관한 연구)

  • 임종인;김용태;김윤경;서광석
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1992.11a
    • /
    • pp.127-130
    • /
    • 1992
  • GF(2m) 이론은 switching 이론과 컴퓨터 연산, 오류 정정 부호(error correcting codes), 암호학(cryptography) 등에 대한 폭넓은 응용 때문에 주목을 받아 왔다. 특히 유한체에서의 이산 대수(discrete logarithm)는 one-way 함수의 대표적인 예로서 Massey-Omura Scheme을 비롯한 여러 암호에서 사용하고 있다. 이러한 암호 system에서는 암호화 시간을 동일하게 두면 고속 연산은 유한체의 크기를 크게 할 수 있어 비도(crypto-degree)를 향상시킨다. 따라서 고속 연산의 필요성이 요구된다. 1981년 Massey와 Omura가 정규기저(normal basis)를 이용한 고속 연산 방법을 제시한 이래 Wang, Troung 둥 여러 사람이 이 방법의 구현(implementation) 및 곱셈기(Multiplier)의 설계에 힘써왔다. 1988년 Itoh와 Tsujii는 국제 정보 학회에서 유한체의 역원을 구하는 획기적인 방법을 제시했다. 1987년에 H, W. Lenstra와 Schoof는 유한체의 임의의 확대체는 원시정규기저(primitive normal basis)를 갖는다는 것을 증명하였다. 1991년 Stepanov와 Shparlinskiy는 유한체에서의 원시원소(primitive element), 정규기저를 찾는 고속 연산 알고리즘을 개발하였다. 이 논문에서는 원시 정규기저를 찾는 Algorithm을 구현(Implementation)하고 이것이 응용되는 문제들에 관해서 연구했다.

  • PDF

On the Role of Intuitive Model for Teaching Operations of Integers in the Middle School Mathematics Class (중학교 수학 수업에서 정수의 사칙계산 지도를 위한 직관적 모델의 역할에 관한 연구)

  • Kim, Ik-Pyo
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.1
    • /
    • pp.97-115
    • /
    • 2008
  • In high school mathematics class, to subtract a number b from a, we add the additive inverse of b to a and to divide a number a by a non-zero number b, we multiply a by the multiplicative inverse of b, which is the formal approach for operations of real numbers. This article aims to give a connection between the intuitive models in middle school mathematics class and the formal approach in high school for teaching operations of negative integers. First, we highlight the teaching methods(Hwang et al, 2008), by which subtraction of integers is denoted by addition of integers. From this methods and activities applying the counting model, we give new teaching methods for the rule that the product of negative integers is positive. The teaching methods with horizontal mathematization(Treffers, 1986; Freudenthal, 1991) of operations of integers, which is based on consistently applying the intuitive model(number line model, counting model), will remove the gap, which is exist in both teachers and students of middle and high school mathematics class. The above discussion is based on students' cognition that the number system in middle and high school and abstracted number system in abstract algebra course is formed by a conceptual structure.

  • PDF

A study on the teaching of algebraic structures in school algebra (학교수학에서의 대수적 구조 지도에 대한 소고)

  • Kim, Sung-Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.8 no.3
    • /
    • pp.367-382
    • /
    • 2005
  • In this paper, we deal with various contents relating to the group concept in school mathematics and teaching of algebraic structures indirectly by combining these contents. First, we consider structure of knowledge based on Bruner, and apply these discussions to the teaching of algebraic structure in school algebra. As a result of these analysis, we can verify that the essence of algebraic structure is group concept. So we investigate the previous researches about group concept: Piaget, Freudenthal, Dubinsky. In our school, the contents relating to the group concept have been taught from elementary level indirectly. Tn elementary school, the commutative law and associative law is implicitly taught in the number contexts. And in middle school, various linear equations are taught by the properties of equality which include group concept. But these algebraic contents is not related to the high school. Though we deal with identity and inverse in the binary operations in high school mathematics, we don't relate this algebraic topics with the previous learned contents. In this paper, we discussed algebraic structure focusing to the group concept to obtain a connectivity among school algebra. In conclusion, the group concept can take role in relating these algebraic contents and teaching the algebraic structures in school algebra.

  • PDF