• Title/Summary/Keyword: 슬래브 교량

Search Result 161, Processing Time 0.023 seconds

Probabilistic Prediction of Structural Performance for Rational Bridge Management Policy (합리적 교량유지관리 의사결정을 위한 구조성능의 추계학적 예측)

  • Oh, Byung-Hwan;Kim, Dong-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.185-193
    • /
    • 2004
  • Reasonable prediction of bridge deterioration is the most important factor in the determination of repair time or optimized maintenance policy for bridges. To accomplish these purposes, the proposed method is composed of quantitative condition assessment, Markov chains and Bayesian estimates. Example predictions of concrete slab bridges in Korea were illustrated with higher reasonability than those of existing methods such as expert opinion and visual inspection only.

An Experimental Study for Longitudinal Resistance of Ballast Track on Bridge (교량 상 자갈궤도의 종저항력 측정을 위한 실험 연구)

  • Min, Kyung-Hwan;Yun, Kyung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.173-178
    • /
    • 2016
  • When a ballast track of a high-speed train is constructed on a bridge, the displacement of the bridge decks can occur because they are not fixed to the rails. Moreover, relative displacements occur between the bridge and rails caused by temperature changes and external loads. The current longitudinal resistance criteria (UIC Code 774-3, KR C-08080) on ballast tracks with continuous welded rails (CWRs) do not take into account the longitudinal movement of the bridge and the frictional force between the ballast and slabs. In addition, the magnitude of the longitudinal resistance, k, is calculated somewhat conservatively and, (therefore?) it acts as an unfavorable element in the design of long span and continuous railway bridges. Thus, in order to replicate the actual behavior more effectively, the longitudinal resistance of CWRs should take into account the additional rigidity between the slab and track. In this study, the longitudinal resistances of the ballasted track on the bridge were analyzed by carrying out an experimental study with a test setup designed to simulate the deck and bed track. In the test results, the maximum longitudinal resistances of the tests were similar to the resistances of the current codes, however, the measured longitudinal stiffness designed to limit the displacement of the tests were much smaller in comparison with the longitudinal stiffness on the codes.

Behavior of Negative Moment Region of Continuous Double Composite Railway Bridges (이중합성 2거더 연속 철도교의 부모멘트부 거동)

  • Shim, Chang Su;Kim, Hyun Ho;Yun, Kwang Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.339-347
    • /
    • 2006
  • This study proposes a double-composite section to enhance the s serviceability of twin-girder railway bridges, especially in terms of the flexural stiffness of the composite section in negative-moment regions. This paper deals with experiments on continuous twin-girder bridge models with 5m-5m span length with the proposed double-composite action. From results of static tests on the bridge models, several design considerations were investigated including effective width, shear connection and ultimate strength of the double-composite concrete slab showed full shear connection, which verified the suggested empirical equation. From the flexural behavior of the double-composite section, the effective width of the bottom concrete slab can be evaluated as that of the concrete slab under compression. The ultimate flexural strength of the bridge models verified the validity of the rigid plastic analysis of the double-composite section. Design guidelines were suggested based on the test results.

A Study on the Design of Shear Connector of Continuous Composite Bridge (연속합성형 교량의 전단연결재 설계에 관한 연구)

  • Chang, Sung Pil;Kang, Sang Gyu;Shim, Chang Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.351-362
    • /
    • 1997
  • In designing short to medium-span bridges, continuous composite bridges are becoming popular due to their advantages. However, if the concrete slab in continuous composite bridge is not prestressed, negative moment occurs in the mid-support and creates problems such as cracks in the concrete slab. Therefore. it must be considered in design. Two methods of arrangement of shear connectors were conducted using finite element elastic plastic analysis. Partial interaction theory was introduced and an analytical solution based on this theory was derived. The differences in the degree of interaction were investigated using analytical solutions and finite element analyses of simple composite beam and continuous composite beams. The results of the analyses were used to determine the advantage and disadvantages as well as any precaution when necessary using partial composite during actual design and construction.

  • PDF

Carbonation Assessment for Superstructure of Bridge Used in Urban Area for 46-Years by Core Specimens Extracted from the Structure (도심지에서 46년 사용된 교량 상부구조물에서 채취한 코어를 통한 탄산화 실태조사)

  • Kwon, Seung-Hee;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.151-157
    • /
    • 2019
  • Concrete bridge constructed in metropolitan cities has different superstructure members like slabs and girders, and their carbonation depths vary with different design strengths and local environmental conditions. In this paper, 54 concrete cores were obtained from prestressed concrete girders and the related tests were performed for compressive strength and carbonation depth measurement. Referred to the specified compressive strength of 24MPa for slab and 35MPa for I-type girder, the strengths from cores were evaluated to 82% and 73% of design grade, respectively. For carbonation depth, the slab member showed 30.6mm of average with 32.9% of COV(Coefficient of Variation) and I-type girder showed 16.7~17.0mm with 22.8~33.6 of COV. The I-type girder has much lower carbonation depth and COV compared to slab member, however it has higher COV than column structures.

Behaviour of Lightweight Concrete Slab Reinforced with GFRP Bars under Concentrated Load (집중하중을 받는 GFRP 보강근 경량콘크리트 슬래브의 거동)

  • Son, Byung-Lak;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • This paper is a preliminary study to apply the lightweight concrete slabs reinforced with GFRP (glass fiber reinforced polymer) bars to the bridge deck slabs or some other concrete structures. So, some different behaviors between the conventional steel reinforced concrete slab and the lightweight concrete slab reinforced with GFRP bars were investigated. For this purpose, a number of slabs were constructed and then the three point bending test and numerical analysis for these slabs were performed. The flexural test results showed that the lightweight concrete slabs reinforced with GFRP bars were failed by the shear failure due to the over-reinforced design. The weight and failure load of the GFRP bar reinforced lightweight concrete slabs were 72% and 58% of the steel reinforced concrete slab with the same dimensions, respectively. Results of the numerical analysis for these slabs using a commercial program, midas FEA, showed that the load-deflection curve could be simulated well until the shear failure of the slabs, but the applied loads and the deflections continuously increased even beyond the shear failure loads.

Optimal strengthening in RC Hollow Slab Bridges using ${\mu}$-GA (${\mu}$-GA에 의한 RC 중공슬래브교의 최적보강)

  • Choi, Se-Hyu;Park, Kyung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.169-178
    • /
    • 2010
  • In this study, the optimal strengthening by micro genetic algorithm(${\mu}$-GA) method is proposed for improvement of load-carrying capacity of RC hollow slab bridges using external prestressing. The Qeen-post type and King-post type are considered for the optimal strengthening. The type for optimal strengthening, deviator, areas of tendons and the number of anchor are calculated by ${\mu}$-GA. The objective function is constituted with dimensionless cost of tendon and steel for optimal strengthening. The constraints are formulated by design specification for bridges and anchors. The validity of this study is presented by analysis of the results after the optimal strengthening of the RC hollow slab bridge.

Comparative Analysis of Track-Bridge Interaction of Sliding Slab Track and Rail Expansion Joint for Long-Span Railway Bridge (장경간 철도 교량에 적용된 슬라이딩 궤도와 레일신축이음장치의 궤도-교량 상호작용 비교)

  • Lee, Kyoung Chan;Jang, Seung Yup;Lee, Jungwhee;Choi, Hyun Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.169-177
    • /
    • 2016
  • Sliding slab track system, which consists of low friction sliding layer between track slab and bridge deck, is recently devised to reduce track-bridge interaction effect of continuously welded rail(CWR) without applying special devices such as rail expansion joint(REJ). In this study, a series of track-bridge interaction analyses of a long-span bridge with sliding slab track and REJ are performed respectively and the results are compared. The bridge model includes PSC box girder bridge with 9 continuous spans, and steel-concrete composite girder bridge with 2 continuous spans. The total length of the bridge model is 1,205m, and the maximum spacing between the two fixed supports is 825m. Analyses results showed that the sliding slab track system is highly effective on interaction reduction since lower rail additional axial stress is resulted than REJ application. Additionally, horizontal reaction forces in fixed supports were also reduced compared to the results of REJ application. However, higher slab axial forces were developed in the sliding slab track due to the temperature load. Therefore, track slab section of the sliding slab track system should be carefully designed against slab axial forces.

Correlation Analysis between Damage of Expansion Joints and Response of Deck in RC Slab Bridges (RC 슬래브교의 신축이음 손상과 바닥판 응답과의 상관관계 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Park, Ki-Tae;Jung, Kyu-San;Kim, Yu-Hee;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.245-253
    • /
    • 2021
  • RC slab bridges account for the largest portion of deteriorated bridges in Korea. However, most RC slabs are not included in the first and second classes of bridges, which are subject to bridge safety management and maintenance. The highest damaged components in highway bridges are the subsidiary facilities including expansion joints and bearings. In particular, leakage through expansion joints causes deterioration and cracks of concrete and exposure of reinforced bars. Therefore, this study analyzed the effect of adhesion damage at expansion joints on the response of the deck in RC slab bridges. When the spacing between the expansion joints at both ends was closely adhered, cracks occurred in the concrete at both ends of the deck due to the resistance rigidity at the expansion joints. Based on the response results, the correlation analysis between displacements in the longitudinal direction of the expansion joint and concrete stress at both ends of the deck for each damage scenario was performed to investigate the effect of the occurrence of damage on the bridge behavior. When expansion joint devices at both sides were damaged, the correlation between displacement and stress showed a low correlation of 0.18 when the vehicles proceeded along all the lanes. Compared with those in the intact state, the deflections of the deck in the damaged case at both sides showed a low correlation of 0.34 to 0.53 while the vehicle passed and 0.17 to 0.43 after the vehicle passed. This means that the occurrence of cracks in the ends of concrete changed the behavior of the deck. Therefore, data-deriven damage detection could be developed to manage the damage to expansion joints that cause damage and deterioration of the deck.

Development of Quantitative Model for Structural Performance of Concrete Bridges Considering of Loads and Environmental Factors (하중과 환경인자를 고려한 콘크리트교량의 정량적 구조성능 평가모델 개발)

  • Oh, Byung-Hwan;Kim, Dong-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.235-242
    • /
    • 2004
  • Bridge Management System (BMS) requires a more objective condition assessment over the lifespan of a given bridge. Thus, a quantitative assessment model of resistance capacity was developed here to meet the requirement for deteriorated concrete bridges. The model focuses on damage mechanisms of concrete bridges deteriorated by traffic loads and environment factors such as chloride and carbonation attacks. Also, it was applied to a typical concrete slab bridge which was severely damaged due to both load and environmental conditions. It was shown that the proposed quantitative model simulates well the deterioration level considering the two damage criteria.