• Title/Summary/Keyword: Scientific model

Search Result 1,335, Processing Time 0.027 seconds

Teaching Models for Scientific Inquiry Activity through the Nature of Science (NOS)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.7
    • /
    • pp.759-767
    • /
    • 2008
  • This article arose from the previous studies, which suggested a synthetic list for the nature of science (NOS), discussed the relationship between the NOS and scientific inquiry and the development of the NOS in the context of scientific inquiry. In this article, for teaching scientific inquiry through the NOS, I proposed three teaching models - reflection, interaction, and the direct model -. Within these teaching models, understanding the NOS is viewed as a prerequisite condition for the improved performance of scientific inquiry. In the reflection model, the NOS is embedded and reflected in scientific inquiry without explicit introduction or direct explanation of the NOS. In the interaction model, concrete interaction between scientific inquiry and the NOS is encouraged during the process of scientific inquiry. In the direct model, subsequent to directly comprehending the NOS at the first stage of activity, students conduct scientific inquiry based on their understanding of the NOS. The intention of this present article is to facilitate the use of these models to develop teaching materials for more authentic scientific inquiry.

An Entity-Aspect Model for Statistical and Scientific Databases (통계(統計)/과학(科學) 데이타 베이스를 위한 개체(個體)-측면(側面) 모형(模型))

  • Yoo, Cheol-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1148-1152
    • /
    • 1987
  • This paper analyzes the statistical and scientific entity-aspect model for statistical and scientific databases(SSDB's). The statistical and scientific entity-aspect model(SEAM) is defined an example of the application of the statistical and scientific entity-aspect model is represented. Finally, the statistical and scientific entity-aspect model as a design tool for SSDB is evaluated and the further research areas are suggested.

  • PDF

Effects of the Inquiry Model on the Scientific Thinking of Preschoolers (탐구학습모형이 유아의 과학적 사고 능력에 미치는 영향)

  • Lee, Yeung Suk;Lim, Myeung Hee;Park, Ho Cheol
    • Korean Journal of Child Studies
    • /
    • v.22 no.2
    • /
    • pp.237-253
    • /
    • 2001
  • This study examined the effects of the inquiry model on children's scientific thinking ability and processing skills. The experimental classroom of a kindergarten in Seoul was assigned the inquiry model while the control classroom was assigned general scientific education (N=48). Seventeen treatment sessions were applied to the experimental group. Tests to investigate the hypotheses included the Sink and Float Test and a new instrument developed by the researchers. Findings showed that preschoolers receiving the inquiry model of instruction gained higher scores in scientific thinking ability and processing skills than the preschoolers in the classroom using the general scientific education model. In sum, this study proved the superior effect of the inquiry model in developing children's scientific skills and ability.

  • PDF

Role of Scientific Reasoning in Elementary School Students' Construction of Food Pyramid Prediction Models (초등학생들의 먹이 피라미드 예측 모형 구성에서 과학적 추론의 역할)

  • Han, Moonhyun
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.3
    • /
    • pp.375-386
    • /
    • 2019
  • This study explores how elementary school students construct food pyramid prediction models using scientific reasoning. Thirty small groups of sixth-grade students in the Kyoungki province (n=138) participated in this study; each small group constructed a food pyramid prediction model based on scientific reasoning, utilizing prior knowledge on topics such as biotic and abiotic factors, food chains, food webs, and food pyramid concepts. To understand the scientific reasoning applied by the students during the modeling process, three forms of qualitative data were collected and analyzed: each small group's discourse, their representation, and the researcher's field notes. Based on this data, the researcher categorized the students' model patterns into three categories and identified how the students used scientific reasoning in their model patterns. The study found that the model patterns consisted of the population number variation model, the biological and abiotic factors change model, and the equilibrium model. In the population number variation model, students used phenomenon-based reasoning and relation-based reasoning to predict variations in the number of producers and consumers. In the biotic and abiotic factors change model, students used relation-based reasoning to predict the effects on producers and consumers as well as on decomposers and abiotic factors. In the equilibrium model, students predicted that "the food pyramid would reach equilibrium," using relation-based reasoning and model-based reasoning. This study demonstrates that elementary school students can systematically elaborate on complicated ecology concepts using scientific reasoning and modeling processes.

Pre-service Elementary Teachers' Inquiry on a Model of Magnetism and Changes in Their Views of Scientific Models (초등 예비교사의 자기 모델 탐구 과정과 과학적 모델에 대한 이해 변화)

  • Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.3
    • /
    • pp.353-366
    • /
    • 2011
  • An alternative vision for science inquiry that appears to be important and challenging is model-based inquiry in which students generate, evaluate and revise their explanatory model. Pre-service teachers should be given opportunities to develop and use their mechanistic explanatory models in order to participate in the practice of science and to have a sound understanding of science. With this view, this study described a case of pre-service elementary teachers' scientific modeling in magnetism. The aims of this study were to explore difficulties preservice elementary teachers encountered while they engaged in a model-based inquiry, and to examine how their understandings of the nature of scientific models changed after the model-based inquiry. The data analysis revealed that the pre-service teachers had difficulties in drawing and writing their own thinking because they had little experience of expressing their own science ideas. When asked to predict what would happen, they could not understand what it meant to make a prediction "based on their model". They did not know how to use or consider their model in making a prediction. At the end of the model-based inquiry they reached a final consensus of a best model. However, they were very anxious about whether the model was the "correct" answer. With respect to the nature of scientific models, almost all of the pre-service teachers initially viewed models only as a communication tool among scientists or students and teachers to help understand others' ideas. After the model-based inquiry, however, many of them understood that they could create, test, and revise their "own" models "by themselves". They also realized the key aspects of scientific models that a model can be changed as evidence is accumulated and a model is a knowledge production tool as well as a communication tool. The results indicated that pre-service elementary teachers' understandings of the nature of scientific models and their previous school science experiences could affect their performance on a model-based inquiry, and their experience of scientific modeling could help them enhance their understandings of the nature of scientific models.

Development of the Scientific Inquiry Process Model Based on Scientists' Practical Work

  • Yang, II-Ho;On, Chang-Ho;Cho, Hyun-Jun
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.8
    • /
    • pp.724-742
    • /
    • 2007
  • The purpose of this study was to develop a scientific inquiry model that makes scientific inquiry accessible to science teachers as well as students. To develop a scientific inquiry model, we investigated the research process demonstrated by ten scientists who were working at academic research institutions or industrial research institutions. We collected data through scientists' journal articles, lab meetings and seminars, and observation of their inquiry process. After we analyzed the scientists' inquiry strategies and processes of inquiry, we finally developed the Scientist's Methodology of Investigation Process model named SMIP. The SMIP model consists of four domains, 15 stages, and link questions, such as "if, why", and "how". The SMIP model stressed that inquiry process is a selective process rather than a linear or a circular process. Overall, these findings can have implication science educators in their attempt to design instruction to improve the scientific inquiry process.

Effect of Infographic Instruction to Promote Elementary Students' Use of Scientific Model (초등학생들의 과학적 모델 사용 활성화를 위한 인포그래픽 수업의 효과)

  • Jung, Jinkyu;Kim, Youngmin
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.279-293
    • /
    • 2016
  • The purpose of this study was to analyze the effect of infographic instruction to promote the use of the scientific model in the 'lens' unit of elementary science textbooks. The participants were $6^{th}$ grade students(n=53) of G elementary school in G city, Gyeongsangnam-do. For this study, the lesson plan of the 'lens' unit consisted of three steps as investigation of students' prior concept about the lens, scientific model construction activity, and infographic construction activity. We then analyzed the results of this study from three perspectives: the scientific concept, scientific model, and infographic. Before the lesson, students focused on the external shape and material of the lens in prior concept of it. However, after the scientific model construction activity and infographic construction activity, students' scientific concept about the lens improved in the categories of features of lens, features of glasses, light path, and applications of the lens. In terms of the scientific model, use of type and frequency of scientific model increased more in the infographic construction activity than the scientific construction model activity. Also, in terms of infographic, the two infographic types as function based infographic and connection based infographic used more than non-infographic in the infographic construction activity. Also, the frequency of Gestal theory's visual perception increased more in the infographic construction activity than the scientific model construction activity.

A Suggestion of Cognitive Model of Scientific Creativity (CMSC) (과학적 창의성 모델의 제안 -인지적 측면을 중심으로-)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.2
    • /
    • pp.375-386
    • /
    • 2004
  • Creative thinking alone can not lead to scientific creativity. Scientific knowledge and scientific inquiry skills are needed for scientific creativity. Focused only on cognitive aspect, I suggested a cognitive model of scientific creativity (CMSC) consisting of 3 components: thinking for scientific creativity, scientific knowledge contents, and scientific inquiry skills. Recently, many researchers have emphasized the various thinking for creativity as well as divergent thinking. Therefore, I suggested three types of creative thinking - divergent thinking, convergent thinking, and associational thinking - and discussed its rationale. Based on this model, an example of activity material for the scientific creativity was suggested. In the further research, based on CMSC, various activity types related to scientific creativity and concrete learning materials for scientific creativity will be developed.

A Possible Scientific Inquiry Model based on Hypothetico-Deduction Method Involving Abduction

  • Oh, Jun-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.3
    • /
    • pp.486-501
    • /
    • 2012
  • The aims of this study are to investigate two main problems for the hypothetico-deduction method and to develop a scientific inquiry model to resolve these problems. The structure of this scientific inquiry model consists of accounts of the context of discovery and justification that the hypothetico-deduction holds as two main problems : 1) the heuristic flaw in the hypothetico-deduction method is that there is no limit to creating hypotheses to explain natural phenomena; 2) Logically, this brings into question affirming the consequent and modus tollens. The features of the model are as follows: first, the generation of hypotheses using an analogical abduction and the selection of hypotheses using consilience and simplicity; second, the expansion phase as resolution for the fallacy of affirming the consequent and the recycle phase as resolution for modus tollens involving auxiliary hypotheses. Finally, we examine the establishment process of Copernicus's Heliocentric Hypothesis and the main role of the history of science for the historical invalidity of this scientific inquiry model based on three examples of If/and/then type of explanation testing suggested by Lawson (International journal of science and Mathematics Education, 2005a, 3(1): 1-5) We claim that this hypotheticho-deduction process involving abduction approach produced favorable in scientific literacy rising for science teacher as well as students.

An Analysis of Structural Equation Model on the Scientific Problem Finding Ability of the Scientifically Gifted Based on Science Related Attitude, Motivation, and Self-regulation Learning Strategy (과학영재의 과학문제발견력 관련변인에 대한 구조방정식모형 분석: 과학관련태도와 동기 및 자기조절 학습전략을 중심으로)

  • Kim, Mpmg-Sook;Han, Ki-Soon
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.1
    • /
    • pp.23-52
    • /
    • 2008
  • The purpose of this study was to examine the Structural Equation Model (SEM) of scientific problem finding ability based on science related attitude, motivation and self-regulation learning strategy of the gifted in science. A total of 153 scientifically gifted students were selected from a university-based Sifted education center The instruments used for the study were Test of Science-Related Attitudes, Motivated Strategies for Learning Questionnaire (MSLQ), and Science Problem Finding Test. In order to examine Structural Equation Model (SEM) of scientific problem finding ability, we assumed scientific problem finding model related to science inquiry, model I (domain specific), and scientific problem finding model related to creativity, model II (domain general) The results of this research are as follows. First, the correlations between science related attitudes and MSLQ were significant; motivation and self-regulated learning strategy as sub factors were positively correlated to science related attitudes. Only scientific attitude as a sub factor of science related attitudes was significantly correlated to elaboration of creativity category in scientific problem finding ability. In other hand, self-regulated learning strategy was significantly correlated to elaboration, inquiry motivation and inquiry level in scientific problem finding ability. Second, as the results of SEM analysis, we confirmed model I and model II were the best adequate through the indices of best fit (TLI, CFI>.90, RMSEA<.08); scientific problem finding ability was directly influenced motivation and self-regulated learning strategy but science related attitudes indirectly influenced scientific problem finding ability through motivation and self-regulated learning strategy. Based on the results, the implications for science gifted education were discussed.