• Title/Summary/Keyword: charge transfer complex

Search Result 67, Processing Time 0.078 seconds

Charge Transfer Complex Formation of Amines with Organic Halides (I) (아민과 有機할로겐 化合物間의 Charge Transfer Complex 形成에 關한 硏究 (I))

  • Kim, Yoo-Sun;Oh, Jung-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.121-125
    • /
    • 1967
  • The formation of a charge transfer complex between various amines and organic halogen compounds was closely investigated. A mixture of amine (piperidine, pyridine, diethylamine, ethylamine, triethylamine and triethanolamine) and organic halides(carbon tetrachloride and chloroform) was checked for its UV absorption spectrum in presence of n-hexane solvent. A red shift was observed. The formation of charge transfer complex was observed in the case of triethylamine and diethylamine, whereas the formation of contact complex was distinct in case of piperidine. The relation between the nucleophilicity of amines and their tendency of forming charge transfer complex was discussed.

  • PDF

Charge-Transfer Complex Formation of Amines with Organic Halides (II) Complex Forming Tendency by Various Electron Acceptors (아민과 有機할로겐 化合物間의 Charge Transfer Complex 形成에 關한 硏究 (II) Electron Acceptor 에 따른 Charge Transfer Complex 形成能에 關한 硏究)

  • Kim, Yoo-Sun;Oh, Jung-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.126-131
    • /
    • 1967
  • Various amines (Triethylamine, Diethylamine, Dimethylaniline, Pyridine and Diphenylamine) and electron acceptors (Carbontetrachloride, iodine monochloride and iodine) were reacted in the hexane solvent system to form a charge transfer complex in each case. The tendency of forming a charge transfer complex by these electron acceptors was proportional to the basicity of amines and the different type of complex was formed as the polarity of electron donor had markedly changed, which were identified by ultraviolet spectrophotometry. A correlation between the formation of complex and the basicity of amine and the polarity of electron acceptor was discussed.

  • PDF

Studies on the Charge-transfer Complex including Aflatoxin $B_1$ -Part I. Charge-transfer Complex with Benzene- (Aflatoxin $B_1$ Charge-transfer Complex에 관(關)한 연구(硏究) -제1보(第一報) Benzene과의 Charge-transfer Complex-)

  • Noh, Ick-Sam;Lee, Kang-Heup
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.143-148
    • /
    • 1974
  • The interaction of the carcinogenic mycotoxin, Aflatoxin $B_1$, with the electron-donating molecule, benzene, was studied spectrophotometrically. The formation of charge-transfer complex between Aflatoxin $B_1$ and benzene in the presence of zinc chloride was observed and the apparent equilibrium constant of this charge-transfer complex was found to be 0.198 (liter $mole^{-1}$). It is assumed that, as the result of this study, some charge-transfer complexes could be formed between the weak electron-accepting Aflatoxin $B_1$ and strong electron-donating molecules, and the spectral changes occurred in the binding of Aflatoxin $B_1$ with proteins or DNA is attributed to the existence of charge-transfer type interaction.

  • PDF

Formation of a complex between furfuryl derivatives and halides (Furfuryl유도체와 하라이드 사이의 Complex형성능)

  • Kim, You-Sun;O, Myeong-Won;Do, Jae-Beom
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.3
    • /
    • pp.221-228
    • /
    • 1970
  • The tendency of forming a charge transfer complex between furfuryl derivatives (2-methyl furan, furfuryl acetate, and Ethyl 2-furoate) and halides(Iodine, Iodine monochloride, and Trichloro bromo methane) was studied by means of ultra violet spectrophotometry. In case of furfuryl acetate the formation of the complex could not be distinctly detected by this method. Iodine and trichloro bromo methane could show a distinct formation of charge transfer complex in the U.V. region, whereas iodine monochloride shows a possibility of forming an addition compound rather than the charge transfer complex itself. The results were discussed in conjunction with the stability of the furfuryl ring.

  • PDF

Photoelectric Properties of Organic Charge Transfer Complex Langmuir-Blodgett Ultra Thin Films (유기전하이동착체 랭뮤어-블로젯 초박막의 광전도 특성)

  • Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.49-54
    • /
    • 2001
  • Ultra-thin films of organic charge transfer complex were prepared on a hydrophilic substrate by Langmuir-Blodgett(LB) technique. In this study, the photoelectric properties of a LB film consisting of (N-docosyl quinolinium)-TCNQ(1:2) complex was investigated. The visible light(${\lambda}$ : 700 nm) of xenon lamp was illuminated on the LB films and light absorptivity and photoconductivity were observed. The photocurrent increased linearly and was saturated at the light intensity of 23 ${\mu}W/cm^{2}$.

Kinetics for the Transformation of Outer Charge Transfer Complex to Inner Complex (Outer Charge Transfer Complex가 Inner Complex로의 변환에 따른 속도론적 연구)

  • Kwon Oh-Yun;Paek U-Hyon;Kim Eung-Ryul
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.343-349
    • /
    • 1991
  • Formation of charge transfer complex between iodine and substituted aniline [aniline, N,N-dimethylaniline(N,N-DMA), 2,6-dimethylaniline(2,6-DMA), 2,4,6-trimethylaniline(2,4,6-TMA)] in CHCl$_3$, CH$_2$Cl$_2$ : CHCl$_3$ (1 : 1), and CH$_2$Cl$_2$ have been studied kinetically by using conductivity method. In the transformation of initially formed outer charge transfer complex to inner complex, the effects of substituted aniline as electron donor and polar medium on the reaction were investigated. The rate of transformation depend on the dielectric contribution of medium and pK$_a$ value of substituted aniline. The order of rate increasing is 2,4,6-TMA, 2,6-DMA, aniline, and N,N-DMA. The activation enthalpy ${\Delta}H^{\neq}$ for 2.5 M-substituted aniline in CHCl$_3$ at 25$^{\circ}C$ is respectively N,N-DMA, 3.47 kcal/mol; aniline, 4.25 kcal/mol; 2,6-DMA, 7.79 kcal/mol and 2,4,6-TMA, 7.96 kcal/mol; and activation entropy ${\Delta}S^{\neq}$ is large and negative value of -41 ~ -55 cal/mol${\cdot}$K.

  • PDF

A Study on the Charge Transfer Complex Formed between 2,4-Dihalogen or 2,4,6-trihalogenanisole Derivatives and Iodine or Iodine Monochloride (2,4-디할로겐 또는 2,4,6-트리할로겐아니솔 유도체들과 요오드 또는 염화요오드 사이에 생성된 전하이동 착물에 관한 연구)

  • Kim, You Sun;Park, Kyung Bae
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.380-390
    • /
    • 1976
  • The trends of forming a charge transfer complex have been studied for electron donors such as anisole, 4-chloroanisole, 2,4-dichloroanisole, 2-fluoro-4-chloroanisole, 2-bromo-4-chloroanisole, 2-iodo-4-chloroanisole, 2-fluoro-4,6-dichloroanisole, 2,4,6-trichloroanisole, 2-bromo-4,6-dichloroanisole, 2-iodo-4,6-dichloroanisole, and 2-iodo-4,5,6-trichloroanisole, and electron acceptors such as iodine and iodine monochloride in the carbon tetrachloride or the hexane solvent system. It was found that the formation of a charge transfer complex was influenced by the Van der Waals Radii of the 2-halogen atoms on the benzene ring and further the overall steric moiety of the molecule of the electron donor. These trends were also experienced in a system of chloroform and one of the prementioned electron donor by means of a nuclear magnetic resonance spectrometry. The spectrophotometrical data on the formation of the charge transfer complex were presented and the results were discussed with views of the steric structure of the 2-halogen atom on the benzene ring.

  • PDF

Chemical Reactivity of N-Iodopyridinium Dichlorodate as a Lubricant Additive (潤滑添加劑로서의 N-Iodopyridinium Dichlorodate의 화학반응성)

  • Moon Tak Jin;Kwon Oh Seung
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.43-49
    • /
    • 1975
  • Small amounts of iodine compound in mineral oils are usually effective in reducing friction of metallic surfaces. Such improvement in frictional behaviour of wear characteristics was explained by the formation of a diiodide layer lattice structure at the metallic contact surfaces. The lubrication mechanism, however, by which organoiodine compounds functions is not based on the formation of such lattice structure iodide. It was tested and shown, by a static surface chemical reactivity test, wear and EP tests, and a hot wire method, that compound such as N-iodopyridinium dichlorodate, a double charge transfer complex, reacted with metals as an interhalogen compound and that the resultant thin film product reduced appreciable the friction of metallic surfaces, more than compounds such as methyl iodide, diiodomethane, and iodoform. These results suggest that the action of iodine, included in organoiodine compounds, is not that of a classical layer structure iodide, and an entirely new mechanism may be derived from a further studies on charge transfer complex compounds of organoiodine compounds.

  • PDF

The Determination of Enoxacin with p-Quinone Derivatives (파라퀴논 유도체와의 전하이동착물 형성을 이용한 에녹사신 정량)

  • 이지연;김동오;남수자;정문모;허문회;안문규
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.437-441
    • /
    • 1999
  • Enoxacin[1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-\piperazinyl)-1,8-naphthyridine-3-carboxylic acid, ENX] is a new quinolone antibacterial agent. The method is based on the highly colored charge-transfer complex formation of this drug as a $\pi$-electron donor with 7,7,8,8-tetracyanoquinodimethane(TCNQ) or chloranil(CL) as $\pi$-acceptors. The colored products were measured spectrophotometrically at 842 nm and 552 nm for TCNQ and CL, respectively. The different experimental conditions are optimized. The linearities for TCNQ and CL were $1.6{\;}\mu\textrm{g}/mL~32{\;}\mu\textrm{g}/mL$ and $6.4{\;}\mu\textrm{g}/mL~160{\;}\mu\textrm{g}/mL$, respectively and colors were produced in non-aqueous media. This report describes a simple and ra\pid method for the analysis of enoxacin.

  • PDF

Deposition condition and Confirmation of Organic Charge Transfer complex Langmuir-Blodgett Film (유기전하 이동착물 Langmuir-Blodgett막의 누적조건 및 누적확인에 관한 연구)

  • Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.89-93
    • /
    • 1997
  • In this research, ultra-thin films of organic charge transfer complex were deposited on to ordinary microscope slide-glass subtrates with a Langmuir-Blodgett technique. ${\pi}$-A isotherm characteristics of these complex were studied in order to find optimum conditions of deposition by varying temperature of subphase, compression speed, and spreading amount. Transfer ratio of these films were studied during the process of deposition. The UV-visible absorbance spectra of LB films were measured to find state of deposition by varing layer number. The observed optimum conditions of surface, pressure, spreading amount, and dipping speed for depositing LB films(Y-type) were 38m/Nm, $150{\mu}l$ and 5mm/min, respectively. Since the tansfer ratio is close to 100%, the monolayer on the subphase seems to be well transferred to the solid substrate. The thickness of the film was well-controlled as the UV-vis absorbance of films were changed linear according to the number of layers.