DOI QR코드

DOI QR Code

Analysis of High Velocity Impact on SFRC Panels Using ABAQUS

ABAQUS를 이용한 강섬유보강 콘크리트 패널의 고속 충돌 거동 해석

  • Son, Seok-Kwon (Dept. of Mechanical Design Engineering, Chungnam National University) ;
  • Jang, Seok-Joon (Dept. of Architectural Engineering, Chungnam National University) ;
  • Yun, Hyun-Do (Dept. of Architectural Engineering, Chungnam National University) ;
  • Kim, Yong-Hwan (Dept. of Mechanical Design Engineering, Chungnam National University)
  • 손석권 (충남대학교 기계설계공학과) ;
  • 장석준 (충남대학교 건축공학과) ;
  • 윤현도 (충남대학교 건축공학과) ;
  • 김용환 (충남대학교 기계설계공학과)
  • Received : 2015.04.24
  • Accepted : 2015.12.01
  • Published : 2016.04.30

Abstract

This paper employed finite element method (FEM) to study the dynamic response of Steel Fiber-Reinforced Concrete(SFRC) panels subjected to impact loading by spherical projectiles. The material properties and non-linear stress-strain curves of SFRC were obtained by compression test and flexural test. Various parametric studies, such as the effect of fiber volume fraction and thickness of panels, are made and numerical analyses are compared with experiments conducted. It is shown that protective performance of concrete panels will be improved by adding steel fiber. Area loss rates and weight loss rates are decreased with increasing fiber volume fraction. Also, penetration modes can be expected by FEM, showing well agreement with experiment. Results can be applied for designing the protection of military structures and other facilities against high-velocity projectiles.

본 논문은 구형 비상체에 의한 충격하중을 받는 강섬유보강 콘크리트 패널의 거동에 대해 유한요소법을 사용하여 연구를 수행하였다. 강섬유보강 콘크리트의 재료 물성치와 비선형구간에 대한 응력-변형 관계는 압축시험과 휨시험을 통해 구하였다. 여러가지 변수 중, 강섬유 체적비와 패널의 두께에 따른 해석을 수행하였고 실험결과와 비교하였다. 강섬유를 혼입함으로써 콘크리트 패널의 방호성능이 향상됨을 확인하였다. 강섬유를 혼입하면 중량 및 면적손실률이 감소하는 효과가 있다. 또한, 유한요소법을 이용하여 파단모드에 대해 예상하였으며 그 결과는 실험과 유사한 경향을 보였다. 이 결과들은 방호 목적의 군용 건물과 기타 건축물의 고속 비상체에 대한 보호를 위한 설계에 대해 적용될 수 있음을 제시하였다.

Keywords

References

  1. Zollo, R. F., "Fiber-reinforced concrete: an overview after 30 years of development", Cement and Concrete Composites, Vol.19, 1997, pp.107-122. https://doi.org/10.1016/S0958-9465(96)00046-7
  2. Yazici, S., Inan, G., and Tabak, V., "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Construction and Building Materials, Vol.21, No.6, 2007, pp.1250-1254. https://doi.org/10.1016/j.conbuildmat.2006.05.025
  3. Ahn, K. L., Jang, S. J., Yun, Y. J., and Yun, H. D., "Effect of Fiber volume fraction on compressive and flexural properties of high strength steel fiber reinforeced concrete", Applied Mechanics and Materials, Vol.597, 2014, pp.296-299. https://doi.org/10.4028/www.scientific.net/AMM.597.296
  4. Kim, H. M., Yap, K. K. Q., Alengaram, U. J., and Jumaat, M. Z., "The effect of steel fibres on the enhancement of flexural and compressive toughness and fracture characteristics of oil palm shell concrete", Construction and Building Materials, Vol.55, No.31, 2014, pp.20-28 https://doi.org/10.1016/j.conbuildmat.2013.12.103
  5. Murthy, A. R. C., Palani, G. S., and Iver, N. R., "Impact analysis of concrete structural components", Defence Science Journal, Vol.60, No.3, 2010, pp.307-319. https://doi.org/10.14429/dsj.60.358
  6. Vossoughi, F., Ostertag, C. P., Monteiro, P. J. M., and Johnson, G. C., "Resistance of concrete protected by fabric to projectile impact", Cement and Concrete Research, Vol.37, No.1, 2007, pp.96-106. https://doi.org/10.1016/j.cemconres.2006.09.003
  7. Jang, S. J., Son, S. K., Kim, Y. H., Kim, G. Y., and Yun, H. D., "Face damage characteristic of steel fiber-reinforced concrete panels under high-velocity globular projectile impact", Journal of the Korea Concrete Institute, Vol.27, No.4. 2015, pp.411-418. https://doi.org/10.4334/JKCI.2015.27.4.411
  8. Kim, S. H., Hong, S. G., Yun, H. D., Kim, G. Y., and Kang, H. K., "High-velocity impact experiment on impact resistance of steel fiber-reinforced concrete panels with wire mesh", Journal of the Korea Concrete Institute, Vol.27, No.2. 2015, pp.103-113. https://doi.org/10.4334/JKCI.2015.27.2.103
  9. Murthy, A. R. C., Palani, G. S., and Iver, N. R., "Impact analysis of concrete structural components", Defence Science Journal, Vol.60, No.3, 2010, pp.307-319. https://doi.org/10.14429/dsj.60.358
  10. Brannon, R. M., and Leelavanichkul, S., "Survey of four damage models for concrete", Sandia National Laboratories, Vol.32, No.1, 2009, pp.1-80.
  11. Ross, C. A., Thompson, P. Y., and Tedesco, J. W., "Splithopkinson pressure-bar tests on concrete and mortar in tension and compression", ACI Materials Journal, Vol.86, No.5, 1989, pp.475-481.
  12. Ross, C. A., Jerome, D. M., Tedesco, J. W., and Hughes, M. L., "Moisture and strain rate effects on concrete strength", Vol.93, No.3, 1996, pp.293-300.
  13. Ezeldin, A. S., and Balaguru, P. N., "Normal and high strength fiber reinforced concrete under compression", Journal of Materials in Civil Engineering, Vol.4, No.4, 1992, pp.415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
  14. Korea Standards Association, "KS F 2405. Standard Test Method for Compressive Strength of Concrete", 2010.
  15. Korea Standards Association, "KS F 2408. Method of Test for Flexural Strength of Concrete", 2000.
  16. Montaignac, R., Massicotte, B., Charron, J., and Nour, A., "Design of SFRC structural elements: post-cracking tensile strength measurement", Materials and Structures, Vol.45, 2012, pp.609-622. https://doi.org/10.1617/s11527-011-9784-z
  17. Martin, O., "Comparison of different constitutive models for concrete in ABAQUS/Explicit for missile impact analyses", JRC Scientific and Technical Report, 2010, pp.1-3.