• Title/Summary/Keyword: AMLCD

Search Result 103, Processing Time 0.3 seconds

A New Voltage Driving Method for Large Size and High Resolution AMOLED Displays with a-Si:H Backplane

  • Yu, S.H.;Hong, Y.J.;Lee, J.D.;Kim, H.S.;Lee, S.J.;Tak, Y.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.197-200
    • /
    • 2008
  • We propose a novel n-type a-Si:H TFT pixel circuit which is proper to AMOLED display for the large size and high resolution. Proposed pixel circuit will be suit to panel for the high resolution because of different threshold sampling method. Driving method of proposed pixel circuit is very simple like an AMLCD. Our simulation indicates that the proposed pixel circuit can compensate the Vth shift and IR rising of power line so that provide better quality image.

  • PDF

Active Matrix Technologies for AMLCD and AMOLED Application

  • Baur, Holger;Buergstein, Thomas;Goettling, Silke;Hlawatsch, Rene;Jelting, Sven;Persidis, Efstathios;Pieralisi, Fabio;Schalberger, Patrick;Axel Schindler, Norbert Fruehauf
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.451-458
    • /
    • 2006
  • The Chair of Display Technology at the University of Stuttgart develops various technologies for active matrix applications. Last year we presented an LTPS active matrix process without the need for ion implantation. This process is compared to other AM processes and the technological demands for different applications are discussed.

  • PDF

Nanoparticle Cleaning of AMLCD Backplane

  • Oh, J.H.;Kang, D.H.;Choi, M.H.;Kim, S.H.;Choo, B.K.;Hur, J.H.;Jang, J.;Kim, I.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.1425-1428
    • /
    • 2006
  • We have proposed a novel cleaning technology with organic nanoparticles for high-performance TFT array. The surface of the TFT layer becomes more hydrophilic after cleaning by the nanoparticles. This is concluded from the comparison of contact angles for the samples cleaned by various methods. It is found that the drain currents in the subthreshold and off-state regions are less than those for the TFTs cleaned with conventional method.

  • PDF

The study of crystallization to Si films deposited using a sputtering method on a Mo substrate (Mo기판 위에 sputtering 법으로 성장된 Si 박막의 결정화 연구)

  • 김도영;고재경;박중현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.36-39
    • /
    • 2002
  • Polycrystalline silicon (poly-Si) thin film transistor (TFT) technology is emerging as a key technology for active matrix liquid crystal displays (AMLCD), allowing the integration of both active matrix and driving circuit on the same substrate (normally glass). As high temperature process is not used for glass substrate because of the low softening points below 450$^{\circ}C$. However, high temperature process is required for getting high crystallization volume fraction (i.e. crystallinity). A poly-Si thin film transistor has been fabricated to investigate the effect of high temperature process on the molybdenum (Mo) substrate. Improve of the crystallinity over 75% has been noticed. The properties of structural and electrical at high temperature poly-Si thin film transistor on Mo substrate have been also analyzed using a sputtering method

  • PDF

Reliability of Low Temperature Poly-Si TFT employing Counter-doped Lateral Body Terminal (저온 다결정 실리콘 박막 트랜지스터의 신뢰도 향상을 위한 Counter-doped Lateral Body Terminal (CLBT) 구조)

  • Kim, J.S.;Yoo, J.S.;Kim, C.H.;Lee, M.C.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1442-1444
    • /
    • 2001
  • A new low-temperature poly-Si TFT employing a counter-doped lateral body terminal is proposed and fabricated, in order to enhance the stability of poly-Si TFT driving circuits. The LBT structure effectively suppresses the kink effect by collecting the counter-polarity carriers and suppresses the hot carrier effect by reducing the peak lateral field at the drain junction. The proposed device is immune to dynamic stress, so that it is suitable for low voltage and high speed driving circuits of AMLCD.

  • PDF

Fabrication and electrical characteristic analysis of poly-Si TFT with lateral body (측면 기판 단자를 갖는 다결정 실리콘 박막 트랜지스터의 제작과 전기적 특성 분석)

  • Choi, H.B.;Yoo, J.S.;Kim, C.H.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1462-1464
    • /
    • 1998
  • Poly-Si TFT(Thin Film Transistor) is a electronic device that can be applied to the field of large area electronics such as AMLCD. We have fabricated the poly-Si TFT with lateral body terminal that is counter-doped body electrode and investigated the electrical characteristics of it. The lateral body terminal being short with s terminal, we have measured the transfer charac (Vg-ld) and the output characteristic (Vd-ld) fabricated devices. The measured result showe only that leakage current in OFF-state was re and Kink effect in ON-state was suppressed bu that in output characteristic curve the output Id was sustained constantly with the output v Vd in the saturation region.

  • PDF

High temperature poly-Si thin film transistors on a molybdenum substrate

  • Kim, Do-Young;Gangopadhyay, Utpal;Park, Joong-Hyun;Ko, Jae-Kyung;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.523-525
    • /
    • 2002
  • The poly-Si thin film can be used in high mobility active matrix liquid-crystal display (AMLCD) and system on panel (SOP). In this paper, poly-Si thin films were grown by novel high temperature process on the molybdenum (Mo) substrate. By applying a high current above 48A on a Mo substrate. We obtained an improved crystalline Si films with the crystallinity over 80%. We exhibit the properties of structural and electrical properties of high temperature poly-Si thin film transistor on the Mo substrates.

  • PDF

Growth of super-grain pentacene by OVPD for AMLCD

  • Jung, Ji-Sim;Cho, Kyu-Sik;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.163-166
    • /
    • 2002
  • We studied the growth of large-grain pentacene film by organic vapour phase deposition. The optimizations of the growth of pentacene are carried out by varying the gas pressure in the reactor and substrate temperature. We found that the grain size depends strongly on the gas pressure in the reactor. The grain size of $20{\mu}m$ has been obtained at the gas pressure of 200 Torr. The film was found to be strongly (001) oriented and its grain size decreases with decreasing the gas pressure.

  • PDF

Characteristics of embedded TFT memory on glass substrate

  • Yu, Hui-Uk;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.260-260
    • /
    • 2010
  • 현대 사회가 고도의 정보화 사회로 변화하는 가운데 능동행렬 액정 표시 소자(AMLCD : Active Matrix Liquid Crystal Display)는 정보 디스플레이 분야에서 없어서는 안될 중요한 위치를 차지하게 됐다. AMOLED는 자체발광형이므로 LCD에 비해 시야각, contrast, 시인성이 우수하며, 화소를 낮은 전류 밀도로 구동시킨다는 장점이 있다. OLED 소자는 각 화소를 구동할 수 있는 박막 트랜지스타가 필요하며, OLED 소자와 결합된 TFT의 연구도 진행되고 있다. 더욱이 모바일 소자에서 낮은 구동 전압과 비용의 절감을 위해 System On Panels (SOP)에 대한 연구가 또한 진행되고 있다. LCD 패널위에 콘트롤러와 메모리와 같은 소자를 직접화시킴으로써 액정 표시 장치를 소형화시킬 수 있으며 신뢰성을 향상시킬 수가 있다. 본 연구에서는 SOP를 위한 ELA 방법을 통하여 결정화한 poly-Si TFT memory를 제작하여 전기적 특성을 조사하였다.

  • PDF

Electrical Characteristics and Fabrication of CNT/Cu Nanocomposite (CNT/Cu 나노복합체의 제조 및 전기적 특성평가)

  • Hong, Youn-Jeong;Kim, Hye-Jin;Lee, Kyu-Mann;Kim, In-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.59-63
    • /
    • 2007
  • The CNTs are the most extensively studied material which are characterized by the complete property of matter, structure, and the large thermal conductivity (thermal conductivity of CNTs ~>2000W/mK vs. thermal conductivity of Aluminum ~> 204W/mK). Thus, they are successfully applied to the various fields. However, due to the strong agglomeration caused by the van der waal's force, their applications are limited. In the present study, a new method for CNTs dispersion was developed by using the mechanical dispersion, acid treatment, and then Cu was coated. This process produces CNTs/Cu nanocomposite powders, whereby the CNTs are homogeneously located within the Cu powders. The electrical properties of the CNTs/Cu nanocomposite were investigated.

  • PDF