유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
-
It is not easy to apply a small-sized centrifugal fan to the duct used for the thermal management of home electronic appliances due to complex design parameters of its blades and scroll. The main objective of this study was to develop the systematic process to design an optimal centrifugal fan based on the 3-dimensional configuration of blades obtained from the conceptual design program self-developed with the given design constraints such as the flow rate, the total pressure loss, the size of fan, and the number of rotation. The design process to find an optimal centrifugal fan for refrigerator was technologically linked in many ways. The complex grid generation system of the fan model included scroll was adopted for the numerical simulation. The FVM CFD code, FLUENT, was used to investigate the three dimensional flow pattern at the coordinate system of rotating frame and to check the optimal performance of the fan. By using this design process, a selected centrifugal fan was designed, numerically simulated, manufactured and experimentally tested in the wind tunnel. The performance curve of fan manufactured by NC process was compared with numerically obtained characteristic curve. The developed design method was proved into being excellent because these two curves were well matched.
-
Tube axial fans were designed to provide effective cooling for a personal computer by using
$DasignFan^{TM}$ software. With basic input parameters of flow rate, pressure rise, rotating speed, and fan diameter, three dimensional geometry of blade is automatically generated and its performance and overall sound pressure level are predicted. In this steady, the newly developed fans of 60 mm and 80 mm diameters were proved to provide a very promising mode of low noise, compared with manufactured products. -
Three-dimensional flow through a tubular centrifugal fan with airfoil type blades are analyzed using CFX-TASCflow. Standard k -
$\epsilon$ model and k -$\omega$ model are used as turbulence closures. The numerical schemes for convetion terms, i.e., Upwind Differencing Scheme(UDS), Mass Weighted Skewed Upstream Differencing Scheme(MWS), Linear Profile Skewed Upstream Differencing Scheme(LPS), and Modified Linear Profile Skewed Upstream Differencing Scheme(MLPS) are also tested. And, the performance of these schemes coupled with two turbulence models are evaluated. Computational static pressure distributions are compared with experimental data obtained in this work. -
In the present study, we studied the method of predicting the on-design and on-design point performance of axial flow fan with adjustable pitch blades. With the change of stagger angle of axial flow fan with adjustable pitch blade, flow rate and pressure can be changed. Because of this merit adjustable pitch fans are used in many industrial facility. When changing stagger angle or estimating the performance at a wide range of off-design condition, incidence angle changes greatly as the flow rate changes. Therefore, the deviation angle at the blade exit is estimated by the correlation considering the effects of blade design, incidence angle variation. In the loss model, we used known pressure loss model for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flow. The results of modified deviation angle model and experiment were compared for the usefulness of the modified model.
-
A computerized axial flow fan design system is developed with the capabilities for predicting the aerodynamic performance and the noise characteristics of fan. In the present study, the basic fan blading design is made by combining vortex distribution scheme with camber line design, airfoil selection, blade thickness distribution and stacking of blade elements. With the designed fan blade geometry, the through-flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with spanwise total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuation induced by wake vortices of fan blades and to radiate as dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fans. Furthermore, the present method is shown to be very useful in designing the blade geometry of new fan and optimizing design variables of the fan to achieve higher efficiency and lower noise level.
-
A program to design an axial flow fan, analyze the performance and predict the noise was developed. In order to develop the low noise fan, that program is compulsory. This software is composed of three parts : the geometric design module, the performance analysis module, the fan noise prediction module. In order to analyze the performance, three dimensional vortex panel method is used. The unsteady flow field was analyzed by time-marching free wake method. The unsteady force data is then used in predicting the noise. Farassat's equation is used to predict the noise of fan.
-
A centrifugal fan design code was developed and included in
$DasignFan^{TM}$ . This program generates forward -curved and backward-curved bladed centrifugal fan data. With the inverse design concept used in the code, the period of designing a fm, which has given aerodynamic performance with minimal acoustic noise, is significantly shortened.. A centrifugal fan design code, developed in this study and included in$DasignFan^{TM}$ , predicts the aerodynamic performance by using mean-line analysis and various loss models. In the period of design a lift force distribution between pressure side and suction side of blade is calculated. And then it is used to calculate steady loading noise from the impeller. -
In this research, we developed a computer code that designs a compressor impeller, which serves as an essential component of a vacuum cleaner, and predicted its performance. The TEIS model originally developed by Japikse(1985), and the mean line analysis m combined to design the centrifugal impeller optimally. In this program the inlet geometry is designed by using the mean line analysis, and with assumption of resonable exit blade angle, the optimal geometry is searched by means of TEIS model and iterative scheme. The performance of designed impeller was compared with experimental data, and the far-field noise by the rotating impeller is also predicted.
-
A numerical analysis to predict the flow characteristics in turbo fan for vacuum cleaner has been performed by using CFD. The rotating reference frame method is applied to compute the impeller-diffuser interaction and the characteristics of two models, 460 and 380, are calculated for various rotating speeds and flow rates. The flow in impeller, diffuser and return channel is assumed as steady and compressible. STAR-CD with k-
$\epsilon$ turbulence model is used to solve the Navier-Stokes equations. Computed relative velocity, absolute pressure and flow angles are shown and compared with measurement results. The good agreement between the predictions and measurement results confirms the validity of this study. -
A new method to calculate the aeroacoustic pressure of a centrifugal fan was developed The fan consists of an impeller, diffuser and circular casing. Due to the high rotating velocity and the small gap between the impeller and diffuser, the centrifugal fan makes very high noise level at BPF and its harmonic frequencies. The aeroacoustic pressure is calculated acoustic analogy In this paper, only dipole term is considered in the equation. The acoustics generated by moving impeller and stationary diffuser is calculated separately. The unsteady flow field data is calculated by the vortex method The predicted acoustic pressure agrees very well to the measured data. The difference of the two is smaller than 3dBA.
-
Unsteady compressible Euler equation is solved and the high-order, high-resolution numerical solver, physical boundary condition, adaptive nonlinear artificial dissipation model and conformal mapping are applied to computation of steady transonic flow and unsteady acoustics. The acoustic characteristics of axi-symmetric duct and two dimensional straight/S channel are studied and the computation results shows good agreements with linear analysis. In transonic case, local time stepping and canceling-the-residual techniques are used for convergence acceleration. The aspect of flow and acoustics in S-channel and the Pattern of noise radiation is changed by inflow Mach no. and static pressure at fan-face.
-
Experimental and numerical investigations of the off·design performance of a simple channel-wedge diffuser in a small centrifugal compressor are presented. Surge and choke conditions as well as design point are considered using somewhat limited range of experimental data and also supplementary 3D CFD results. Some critical meanline design parameters' behavior is investigated numerically, to render the basis for improved modelings in the meanline performance prediction.
-
As the second part of the author's study, off-design behavior of the design and performance parameters in the low-solidity cascade diffuser in a centrifugal compressor is investigated. The experimental flange-to-flange compressor map serves the validity of application of the present CFD work to the detailed investigation of the low-solidity cascade diffuser. Some meanline design and performance parameters as well as three-dimensional internal secondary flow fields are studied when the flow rate is changed from deep choke to stall.
-
In this study, the instability of a centrifugal compressor with vaned diffuser was investigated. During unstable operation of the test compressor, pressure fluctuations at different diffuser radius ratios were measured by using high frequency pressure transducers. Two different types of stall, mild and deep stall, were observed alternately and irregularly at some flow rate where the compressor performance was steeply deteriorated. In this transient zone, the size of rotating stall cell was estimated through the Wavelet transform analysis. It was about 45 percents of rotor circumferential space at 3000 rpm and not dependent on flow rate.
-
This paper presents analysis of the flows through three different types of radial compressor impeller by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.
-
Interaction of flow through an Impeller and a Vaned Diffuser in Centrifugal Compressor was investigated using the 3-dimensional Wavier-Stokes solution method. To consider the interaction effect of impeller and vaned diffuser, Inlet boundary conditions are imposed with the results of the steady calculation of the impeller and rotates with time. The results have been compared to steady computation results and experiment. From this, it is discussed about the compatability of the method and the advantage and disadvantage of the steady calculation.
-
The effects of various vaned diffuser configurations, such as throat area ratios and rectangular and conical cross-section shapes. to the performance of a small-size turbo-compressor are studied. Numerical analyses were carried out for the region of diffuser and casing only. The pressure recovery coefficient was calculated to estimate the performance of the diffuser, and then compared with the measured data. Results show that the shapes and the throat area ratios of the diffuser strongly influence on the performance of a turbo-compressor.
-
The paper presents the optimal design of a oil-free two-stage compressor, which is driven by 75 kW motor at an operating speed of 39,000 rpm, and the pressure ratio of which is up to 4. First, an attempt is made to obtain the optimal design of a bump bearing which supports a compressor rotor. Second, bump bearings and shaft are considered simultaneously, and the weighted sum of rotor weight and frictional torque is minimized. Finally, the optimal geometry of compressor wheel is considered. The mean efficiency and the - minimum efficiency are maximized respectively. The results presented in this paper provide important design information necessary to reduce the energy loss.
-
Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. Ana, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.
-
In this study, to investigate the effect of the generalized performance curve on the performance prediction and to find the optimal ones, a systematic study is performed. For this purpose, we compared the influence of the stage performance curves with experimental data in multi-stage axial compressors. As a result, it is discovered that the optimal generalized performance curves vary according to the number of the stages in compressors. And we found that for a low-stage compressors, Muir's pressure coefficient curve gives the best prediction results at design rotational frequency regardless of the efficiency curve. On the other hand, for high-stage compressors, Stone's pressure coefficient curve gives the optimistic results about the performance prediction at design rotational frequency.
-
Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.
-
An extensive range of pumping facilities are employed in the regional water supply system in metropolitan areas, and optimization and the systematic combination of the pump facilities have direct bearing on the stability and economy of the water supply system concerned. These systems must be able to guarantee stability, efficiency and offer high reliability. Preparation of metropolitan area regional water supply system construction project must include a basic plan which takes into account the suitability of pumping facilities to be used, the environment in which facilities will be installed, man-power requirements and basic operational and management policies. This paper contains over-all analysis of the management of metropolitan area regional water supply systems and highlights the cause of Inefficiency and energy waste and puts forward a remedial plan of action. In addition, pump/motor specification programs were developed using Visual Basic to assist selection of the same.
-
An extensive range of pumping facilities are employed in the regional water supply system in metropolitan areas, and optimization and the systematic combination of the Pump facilities have direct bearing on the stability and economy of the water supply system concerned. These systems must be able to guarantee stability, efficiency and offer high reliability. Preparation of metropolitan area regional water supply system construction project must include a basic plan which takes into account the suitability of pumping facilities to be used, the environment in which facilities will be installed, man-power requirements and basic operational and management policies. This paper contains over-all analysis of the management of metropolitan area regional water supply systems as like Jayang, Paldang 1st pump station. In the study, it aims to prepare counterplan which will be operated and managed the pump upon the operational conditions and to suggest the proposal for water facilities codes to decides total head of pump in Korea.
-
The Pump/Motor Selection Program for optimized selection of regional water supply facilities was developed based on a flowchart compiled from basic operational data, total head requirement, initial pump/motor specification selection etc.. This program was developed in Visual Basic. The program accepts, as in the flowchart, operational requirements of pumps and other system requirements and calculates specific speed based on flow rate, total head and na Then the calculated specific speed is used to select pump types and rpm Prior to determining likelihood of cavitation occurring at the calculated NPSH. Power requirement is then calculated for safe operation of pump to assist final pump selection. Test results of the program matches very closely to the design values of Paldang intake pump station(3rd stage) proving that the program can be used as an effective and practical aid for designing new regional water supply systems.
-
For two kinds of the multi-stage centrifugal pump with diffuser vanes and return channel vanes the meanline performance prediction is applied to get information of hydraulic performance at each internal flow station, because only flange-to-flange test curves are available. As a first step of redesign fur higher efficiency, the impeller geometry is numerically investigated in the present study. Quasi-3D inviscid loading distributions are obtained, for the two impellers, using the state-of-the-art method of impeller 3D design, which provides a guide to optimal redesign. Full 3D turbulent flow fields are thereafter analyzed, using the specialized CFD code, to confirm the redesign results. The inherent limitation of the traditional graphic method of impeller design, which most of domestic pump manufacturers are now employing, is found.
-
The cavitation causes suction performance and efficiency of the high-speed pump to be reduced significantly To diminish these effects, the inducer has been used. Most of the inducer is designed at a maximum efficiency point of the pump, therefore suction performance drop due to effects of flow separation and inlet inverse flow is often observed at off-design point. The objective of this study is to find out the cavitation modes at various conditions by applying event detection technique and to design an inducer reducing cavitation. The pressure fluctuations at each cavitating condition were measured at inducer inlet and outlet locations using pressure transducers, which were located 90 degrees apart from each other to identify the cavitation modes. The time-frequency characteristics were analyzed by using Choi-williams distribution. In the second part of this paper, the inducer design method which uses nominal performance characteristic and onset condition of cavitation is introduced and applied to real situation.
-
In the systems with largely pipe head loss, variable speed pumps are generally used because substantial energy saving can be expected from such systems by controlling pump speed and also they offer simpler maintenance and operational ease even in conditions where abrupt changes In flow rate and head can occur. The invertor or the fluid coupling system are mainly adopted to control the rotating speed. In this paper, operating conditions at Migum pressing pump station(5 stage), where the fluid coupling system was the first installed for KOWACO, are investigated and analysed so that information thus gained can be usefully employed in the efficient operation of variable speed pump in new installations of in-line booster pumping station.
-
The heat produced by the fission in the fuel of HANARO, 30 MW of research reactor, was transferred from the primary cooling water to the secondary cooling water through heat exchangers. The secondary cooling water absorbed the heat was circulated by secondary cooling pumps and cooled through 33 MW of cooling tower. Each capacity of the three secondary cooling pumps was fifty percent (
$50\%$ ) of full load. The two pumps were normally operated and the other pump was standby. One of the secondary cooling pumps has often get troubles by high vibration. To release these troubles the pump shaft has been re-aligned, the pump bearing has been replaced with new one, the shaft sleeve has been replaced with new one, the shaft and the impeller have been re-weight balanced representatively or the vibration of motor has been tested by disconnecting the shaft of pump. But the high vibration of pump cannot be cleared. We find out the weight balance trouble of the assembly that the impeller is installed in the shaft. After clearing the trouble, the high vibration is released and the pump is operated with smooth. In this paper the trouble solution of secondary cooling pump is described including the reason of high vibration. -
In this paper, the pumping performance of the three-stage disk-type drag pump which works in the outlet pressure range from 4 to 0.01 Torr is studied experimentally. The rotational speed of the pump is 24,000rpm, and nitrogen is used as a test gas, The pumping characteristics of various drag pumps are investigated. The inlet pressures are measured for various outlet pressures of the test pump. The maximum compression ratios for zero throughput are measured for three-stage, two-stage BSC type, helical-type, one-stage BSC type and one-stage OSC type, respectively.
-
The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite pool with no nearby walls or floors and no stray currents, Hence, flow into the Pump suction is symmetrical with no vortices or swirling. Pump station designers rely on these curves to define the operating conditions for the pump selected. But various constraints such as size, cost, and limitations on storage time require walls, floors, and pump intakes to be close proximity to each other. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump found in pump stations. Model pump intake basin is designed and PIV is adopted as a measuring tool to capture the instantaneous flow patterns. Special attention is paid to investigate the flow patterns near the free surface, side-wall and back-wall due to different clearances from back-wall to vertical in take pipe. Moreover, the locations and vorticities of the various types of vortices that were found in the examinations are discussed.
-
Flow analysis was carried out for two vertical pumps. The geometrical difference of two pumps is the adoption of vaned diffuser. Full pump models were used to simulate the velocity fields of the pumps. Pump head and velocity field were compared to obtain the features of diffuser flow. It was shown that the discontinuity of head curve was predicted and reverse flow could be generated at impeller exit even in the rated flow condition.
-
HANARO, 30MW of research reactor, was installed at the depth of 13m of open pool, The
$90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the core. The rest$10\%$ , of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to protect that the radiated gas was lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection and increased the radiation level on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$ ) in comparing with that before the installation of the HWL. When HANARO was operated with higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss was increased. And it was verified that the radiation level above was reduced more safely by increasing the capacity of heater. -
The turbopump inducer cavitation is very important for the success of a Liquid rocket engine. In this study the performance test and cavitation performance test were carried out at various rotational speed with two different diameter inducers. The rotational speed were varied 4000, 6000, 8000 rpm and the variation to the diameter of an inducer were taken as design size and 2 times enlarged size. The major results of the present study were as follows. 1. The hydraulic performance results showed that the similarity was met over the entire test range of the present study. 2. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for large tip clearance. 3. The cavitation performance test results showed that the breakdown NPSH increases as the flow coefficient and does not affected by the rotational speed.
-
Hydraulic performance of LCH4 fuel inducer in turbopump system was predicted by 3-D Wavier-stokes calculation. The inducer was designed initially using 1-D method. Different parameters with blade angle and flow coefficient were set from the initial design one, md computation was fulfilled to assess the redesigned models. Especially, influence of inlet back flow on inducer performance and its effective control were explored. The numerical results showed that through reducing inlet back flow strength., the hydraulic efficiency of inducer could be improved up to about
$20\%$ compared to that of the initial design one. -
Steady state flow calculations are executed for turbo-pump inducers of modem design to validate the performance of Tascflow code. Hydrodynamic performance is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main source of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of pressure loss through the whole blade. The total viscous loss is considerably large due to the strong secondary flow.
-
Low NPSH and high pressure pumps are widely used for turbopump systems, which have an inducer and operate at high rotating speeds In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions and at design or off-design points. The method was applied for the performance prediction of a fuel pump, which had been developed by Hyundai Mobis in collaboration with KeRC for a liquid rocket engine. The engine uses liquid methane and liquid oxygen as working fluids and rotates at 50,000 rpm KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed (10,000
${\~}$ 15,000 rpm). Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. -
A fuel pump for a turbopump system has been designed under an international co-work program. The liquid methane fuel pump has an inducer, in front of centrifugal impeller blades, to improve cavitation performance. The three dimensional viscous flow in the fuel pump was investigated through numerical computation. An arrangement of the inducer and impeller has yielded a strong interaction between inducer and impeller blades. The performance of the pump was evaluated from the calculated results. A parametric study was performed for various design variables, and it could oner a database for design parameters to design a fuel pump. A modified design of a fuel pump was proposed by KIMM to improve pump performance.
-
The hydraulic performance analysis of an entire pump system composed of an inducer, impeller, volute and seal for the application on turbopumps is performed using three-dimensional Wavier-Stokes equations. A quasi-steady mixing-plane method is used on the impeller/volute interface to simulate the unsteady interaction phenomena. From this wort the effects of each component on the pump performance are investigated at design and off-design conditions through the analysis of flow structures and loss mechanisms. The computational results are in a good agreement with experimental ones in terms of the headrise and efficiency even though very complex flow structures are present. It is found that the asymmetric pressure distribution along the volute wall constitutes the main reason of the difference between experimental and computational results due to the limitation of the applying the quasi-steady method. Since the volute was found to be over-designed according to the pressure distribution of the volute wall, redesign of the volute has been performed resulting in an improved performance characteristic.
-
Structural and dynamic analyses of inducer and impeller for a oxidizer turbopump are peformed to investigate the safety level of strength and vibration at design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three dimensional finite element method(FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances m sufficient enough to be operated safely within the required life cycle.
-
The radial turbine has been successfully applied to the systems which request relatively small output compared with the axial turbine, and has low manufacturing cost due to it's small size and simple structure. Recently, the researches on the development and the efficiency maximization of the radial turbine are in progress corresponding with the trend toward miniaturization in turbo machinery and the development of small dispersed power generation systems. The radial turbine is to be applied to our turbo refrigerator of which engine speed is 26,000 rpm and turbine efficiency is
$88\%$ . Also, as a heat exchanger is accepted instead of a combustor in our turbo refrigerator, the design of radial turbine has been performed to be appropriate to the circumstance of low temperature air, not high temperature combustor gas, into the turbine inlet . This radial turbine is being developed in consideration with not only the aero-dynamic performance but also the simplification of manufacturing and integration, and the durability at operating condition. This paper refer to the performance evaluation about the radial turbine design by comparison with consulting from Russia and the our evaluation about various design factors which are considered in aero-dynamic design process. -
The objective of this study is to verify the secondary flow and the total pressure loss distribution in the boundary layer fence installed linear turbine cascade passage and to propose an appropriate height of the boundary layer fence which shows the best loss reduction among the simulated fences. In this study three different boundary layer fence was installed which have different height. This study was performed by numerical method and the result showed the boundary layer fence which has the height of one third of the inlet boundary layer thickness showed the best loss reduction rate.
-
Since the previous cut-and-try design algorithm require much cost and time, it has recently been concerned the automatic design technique using the CFD and optimum design algorithm. In this study, the Navier-Stokes equations is solved to consider the more detail viscous flow informations of cascade interaction and O-H multiblock grid system is generated to impose an accurate boundary condition. The cubic-spline interpolation is applied to handle a relative motion of a rotor to the stator. To validate present procedure, the time averaged aerodynamic loads are compared with experiment and good agreement obtained. Once the N-S equations have been solved, the computed aerodynamic loads may be used to computed the sensitivities of the aerodynamic objective function. The Modified Method of feasible Direction(MMFD) is usef to compute the
-
A rotating blade of steam turbines is designed using blade design system. To minimize the design time. quasi three dimensional flow analysis code is adopted to calculate blade section. The blade section lies on a streamline determined by previous steam turbine design procedures. The blade design system makes a transform of streamline coordinates, (m, r
$\theta$ ), to (m',$\theta$ ) coordinates and all design procedure except 3 dimensional stack-up is performed in the coordinates. Each designed blade section is stacked-up and whole 3 dimensional blade can be modified by correcting 2D section, repeatly. The full 3D numerial analysis for the one stage including designed rotating blade will be performed later -
The high efficient steam turbine stage has been analyzed with the help of the 3-dimensional analysis tool. To increase the efficiency of steam turbine stage, the nozzle has to be designed by using the 3-dimensional stacking method. And the bucket has to be designed to cope with the exit flow of nozzle. To verify the stage design, therefore, the numerical analysis of the steam turbine stage was conducted. In this design, CFX-TASCflow was employed to predict the steam flow of the steam turbine stage. The numerical analysis was performed in parallel calculation by using the HP N4000 8 CPUs machine. The result showed the numerical analysis could be used to help to design the steam turbine stage.
-
The shaft system of turbine is composed of rotating shaft, blades, bearings which support the shaft, packing seal which prevent the leakage of steam, and couplings which connect the shaft. Shaft system component failure, incorrect assemblage or deflection by unexpected forces causes vibration problem. And every turbine has its own characteristics in dynamic response. In this paper we propose the three-bearing supported type rotor which is real equipment and being operated this time as commercial operation. From 1996 it has a high vibration problem and there are many kinds of trial to solve this problem. In resent outage we performed a special diagnosis and carried out appropriate work. We would like to introduce and explain about this case history.
-
The present study investigates convective heat/mass transfer and flow characteristics inside the cooling passage of the gas-turbine blades. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. The square duct has compound-angled ribs with
$60^{\circ},\;70^{\circ}$ and$90^{\circ}$ attack angles, which are installed on the test plate surfaces. a naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wall and the vertices near the side-wall. The local heat transfer and the secondary flow in the duct are changed largely according to the rib orientation. Therefore, geometry and arrangement of the ribs are important fur the advantageous cooling performance. The angled ribs increase the heat transfer discrepancy between the wall and center regions because of the interaction of the secondary flows. The average heat/mass transfer coefficient and pressure drop of the ribs with the$60^{\circ}$ $-90^{\circ}$ compound-angle are higher than those with the$60^{\circ}$ attack angle. Also, the thermal efficiency of the compound-angled rib is higher than that with the$60^{\circ}$ attack angle. The uniformity of heat/mass transfer coefficient on the cross ribs may is higher than that on the parallel ribs array. -
In order to investigate the effects of various injection hole shapes on the film cooling of turbine blade, three test models having cylindrical and shaped holes were used. A three-dimensional Navier-Stokes code with standard k-
$\epsilon$ model was used to compute the film cooling coefficient on the film cooled turbine blade. Over 330,000 grids were used to compute the flow over the blade. Mainstream Reynolds number based on the cylinder diameter was$7.1{\times}10^4$ . The turbulence intensity kept at$5.0\%$ for all inlets. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of test model were calculated. Temperature was visualized using cartesian cut-cell method to obtain traces of the injected secondary air on the test surface, so we could interpret the film effectiveness as temperature distributions. -
The present study investigates convective heat/mass transfer and flow characteristics in wavy ducts of primary surface heat exchanger. Experiments using a naphthalene technique are carried out to determine the local transfer characteristics for flow in the corrugated wall duct. The aspect ratios of the rectangular duct cross-section are 7.3, 4.7 and 1.8 with a corrugation angle of
$145^{\circ}$ . The Reynolds numbers, based on the duct hydraulic diameter, are ranged from 1000 to 5000. The local heat/mass transfer measurement is conducted in the spanwise directions. The results show that Tayler-Gortler vortices exist on the pressure surface. Flow separation on the suction surface appears at a high Reynolds number resulting in a sharp decrease in the local transfer rates, but relatively high transfer rates are obtained in the reattachment region. -
A combined cycle, 'HYBRID', is emerging as a new power generation technology that is particularly suitable for the distributed power generation system, with high energy efficiency and low pollutant emission. Currently micro gas turbines and fuel cells are attracting a lot of attention to meet the future needs in the distributed power generation market. This hybrid system may have every advantages of both systems because a gas turbine is synergistically combined with a fuel cell into a unique combined cycle. The hybrid system is believed to become a leading runner in the distributed power generation market. This paper introduces a current plan associated with the development of the hybrid system which consists of a micro gas turbine and a solid-oxide fuel cell(SOFC).
-
Hybrid energy system of fuel cell and gas turbine is discussed as the system to be used in the distributed power generation. Discussion is first directed to the distributed power generation system which is expected to be more popularly introduced both in urban and isolated areas. In the next some characteristic features of fuel cell and micro gas turbine are shortly described. In the last discussion is turn to the fuel cell and micro gas turbine hybrid system. In particular, performance characteristics of a representative SOFC/MGT hybrid system are investigated through the concept design at various power capacity levels.
-
A mim turbo-shaft engine of 50HP for UAV, which can be easily modified to turbo-prop and turbo-jet engine by sharing the core engine and has many applications to civilian demands and munitions, will be developed This kind of micro gas turbine engine has been developed mostly by the corporations which have special technology but are small in its scale. Especially, the gas turbine engine can be easily applied to other fields and developed by domestic technology, so that the sharing of technology is planed to realize through the cooperations with academies and research institutes. In this paper, the gas turbine engine, which has the compressor ratio of 3.8, the turbine inlet temperature of l180K and the engine speed higher than 100,000 rpm, is composed of centrifugal compressor, combustor, gas generator turbine, free power turbine and gear box. The competitiveness of the gas turbine engine can be obtained from minimizing its cost by the utilization of domestic infrastructure for the performance test and the decisive outsourcing.
-
A fuel cell is an electrochemical energy conversion device tint converts hydrogen and oxygen into electricity and heat for hot water and heating room A fuel cell provides a DC voltage tint can be used to power motors, lights or any number if electrical appliances. There are several different types if fuel cells, each using a different chemistry. Some types if fuel cells show promise for use in DC (distributed generation) because fuel cell is very clean and efficient energy device. CETI (Clean Energy Technologies, Inc.) is developing PEMFC and DMFC for residential power generation, portable and battery. It is anticipated tint RPG is advantageous over current power generation by utility In terms if economics assuming the lifetime of major components is at least five years.
-
Solid Oxide Fuel Cells (SOFCs) have received considerable attention because of the advantages of high effiiciency, low pollution, cogeneration application and excellent integration with simplified reformer In this paper, we reported development of anode-tubular SOFC by wet process. For making tubular cell, Ni-cermet YSZ anode tube was fabricated using extrusion process, and YSZ electrolyte layer and LSM-YSZ composite, LSM, LSCF cathode layer were coated onto the anode supported tube using slurry dipping process and sintered by co-firing process. By using this tubular cell, we fabricated single cell consisted of the various cathode layers and 4 cell stack with an effective area of
$75 cm^2$ per single cell, and evaluated their performance characteristics. -
This paper reports on the development of micro power system under way at Seoul National University. The interdisciplinary tin consists of members with various backgrounds of mechanics and materials. The need for micro power systems is explained, and a turbine under development is described. Design, and fabrication are introduced, and technical challenges in each phase are described. Furthermore, the interaction between the available fabrication methods and design is explained. Design involves use of commercially available codes to analyze flow fields, and fabrication takes advantage of the silicon wafer etching processes used to manufacture semiconductor devices.
-
Korea Gas Corporation(KOGAS) have constructed a gas flowmeters' calibration facilities at Jungdong Bucheon. The facilities consisting of 6 reference turbine meters can perform calibrations of large capacity natural gas flowmeters up to
$9,600 m^3/h$ at 95 kPa. This large capacity and high pressure natural gas facilities is traceable to the national standard of gas flow rate (KRISS). In this article the motive of construction and description of design are summarized. -
For the piezoelectric vibrator, PZT, in a general transmit-receive sensor using the ultrasonic flowmeter, the characteristics of frequency response relating to the backing materials were analyzed with the Mason equivalent circuit for design and the sensitivity of fabricated transducer relating to the matching materials was measured and discussed. The results those were measured in water for the transmit-receive characteristics of each transducer can be applied to the flowmeter sensor.
-
In this study, commercial CFD code, i.e, CFX-4.3 is used to analyze the flow field and to calculate pressure differences in an orifice flowmeter. Four numerical schemes and five turbulence models are tested. Hybrid scheme and Reynolds stress model show the best performance. Chosen scheme and turbulence model are applied to predict pressure differences through the orifice for the diameter ratios, 0.3, 0.5, and 0.7. And, the results are compared with the experimental data. The results show that the calculation error is inversely proportional to the diameter ratio, and is proportional to the mass flow rate.
-
A new thermal type fluid level transmitter was designed and tested at the HITROL R&D institute. The relation of heat transfer and electric resistance was adopted as an operation principle. The length of a fabricated level transmitter was two meters and a water under normal temperature was used as a working fluid for the experiment Finally, the new product could have a high precision, acceptable accuracy and reasonable response time. Foreign-made level transmitter of this type is under in use for measuring water level of containment building in nuclear power plants so far. It is expected that new product will substitute it.
-
Emergency shut-on valve was developed to shut off natural gas at the front of a gas meter in the house. The shut-off flow rate and differential pressure of this valve was controlled by adjusting the distance between the spool and magnet. Also the spool shape was an important factor in the performance of this valve. The experimental and computational results will be useful for the design having better performance.
-
TCV(Temperature control valve by pressure compensation) controls temperature constantly, when it is sending steam or high temperature water to heating device of heat exchanger. For designing TCV, the ratio of piston and hole diameters is one of the important design parameters. Numerical analysis is carried out to elucidate the flow characteristics in the TCV with different port areas of cold and hot waters, using the k-
$\epsilon$ turbulence model and Cartesian cut-cell method. Numerical results show that the exit flow rate is mainly affected by pressure distribution in the piston. -
Fluidic valve is adopted in APR1400 to control passively the flow rate of cooling water from the safety injection tank. It is necessary to establish independent evaluation guideline for the flow characteristics of fluidic valve in order to secure safety. Three dimensional numerical model for fluidic valve is developed and numerical results are compared with experimental data obtained at KAERI in order to verify numerical simulation. Also influence of the grid number and the turbulence model were investigated. In addition, variation of flow rate is investigated at various elapsed times after valve operating, and flow characteristics are analyzed at low and high flow rate conditions, respectively.
-
Noise is one of the major environmental problems in human life. To reduce the noise emitted from the control valve it is necessary to develop the measurement method, measurement system, analysis method applicable to the field. In this study IEC and ISO standards were investigated and measurement method for the valve noise was proposed. Noise from the valve was measured in the reverberation room and sound power level was calculated. The sound power level increased as the flow rate and pressure difference increased. The noise characteristics are useful to predict valve noise for given conditions, to compare the performance of different valves and to develope low-noise valves.
-
This paper presents numerical method of investigating flow characteristics of reed valves of reciprocating compressors. The numerically determined effective flow areas agreed within
$5.4\%$ of those obtained from experimental measurements. Reasonably good agreements between the experimental and numerical results have been found, implying that the effective flow and force areas of reed valves could be obtained by CFD alone with enough accuracy. A computer simulation of reciprocating compressor has been performed using a numerical results of reed valves. The calculated P-V diagram shows a good agreement with experimental result. -
A commercial CFD code is used to compute the 3-D viscous flow field within the inlet flow concentrator of the newly developed AHU(Air Handling Unit). To improve the performance of the AHU, the inlet air needs to be gradually accelerated to the fan's annular velocity without causing turbulence or flow separation. Three major geometric parameters were selected to specify the inlet shape of the AHU. Several numerical calculations are carried out to determine the influence of the geometric parameters on the performance of the AHU. The performance of the AHU could be measured by the inlet and outlet flow uniformity and the total pressure loss through the inlet flow concentrator. The optimized nondimensionalized velocity profile through the inlet flow concentrator were used for the design of the AHU with the various volume flow rates.
-
The present study is concerned with the flow patterns induced by other impellers in a rectangular tank Impellers are FBT(Flat blade turbine), PBT(Pitched blade turbine), Shroud turbine, Rushton Turbine, and Helical ribbon turbine. The solution of flows in moving reference frames requires the use of 'moving' cell zone. The moving zone approaches are MRF(Multiple reference frame), which is a steady-state approximation and Sliding method, which is a unsteady-state approximation. Numerical results using two moving zone approaches are compared with experiments by Ranade & Joshi, which have done extensive LDA measurements of the flow generated by a standard six-bladed Rushton turbine in a cylindrical baffled vessel. In this paper we simulated the flow patterns with above mentioned moving zone approaches and impellers. Turbulence model is RNG k-
$\epsilon$ model. -
In the present study, steady and unsteady flow characteristics inside an industrial mixer with flat turbine type impeller are studied. For the flow analysis, STAR-CD is used with an automatic mesh generator developed in the present study. flow results are compared to the an available experimental data to show validity or the present simulation.
-
The feasibility of a oil-free motor-driven two-stage centrifugal compressor supported by air bump bearings is investigated. This centrifugal compressor is driven by 75kW motor at an operating speed of 39,000RPM md a pressure ratio of the compressor is up to 4. The analysis is performed, based upon bearing equilibrium position, bearing stiffness, Campbell diagram, unbalance response and stability. It is demonstrated in this paper that air bump bearings can be adopted well to a oil-free motor-driven centrifugal compressor.
-
Foil bearings have been successfully used for small high speed rotors, such as ACM(Air Cycle Machine), turbo charger, turbo compressor, high speed motor, etc. Recently advanced researches are concentrated on the high load capacity and the extreme temperature foil bearings to extend the application boundary. Some bearings are already adopted into cryogenic machines and micro gas turbines. In this paper, a foil journal bearing designed for high load capacity, which is under development, is introduced. The bearing is for the turbo refrigerator which has a rotor of 18
${\~}$ 25 kgf rotating at 23,000${\~}$ 38,000 rpm. This application is well beyond conventional spectrum of foil bearings because the rotor is relatively heavy and the rotational speed is low. Therefore, the development is challenging. The foil bearing is a bump type, the size is 60mm in diameter and 50mm in length, the operating fluid is air and rotational speed is 26,000 rpm. In-house software was developed and used for bearing design. Tested maximum load capacity is 80kgf, 0.62 in terms of load capacity coefficient, and testing is being continued. -
Leaf type foil bearings have been used successfully in many aerospace applications such as air cycle machines, turbocompressors and turboexpander. These applications are characterized by light loads, constant speeds and low to moderate temperatures. But, as system on start-up or shutdown, sliding contact between the shaft and foil surfaces cause wear. So, in present study, to understand pressure-flow characteristics and deformation of foil bearing, flow/structure interaction analysis was used. and using this method, 2D and 3D calculation was peformed for shape of foil bearing to know circumferential direction flow and leakage flow characteristics of axial direction.